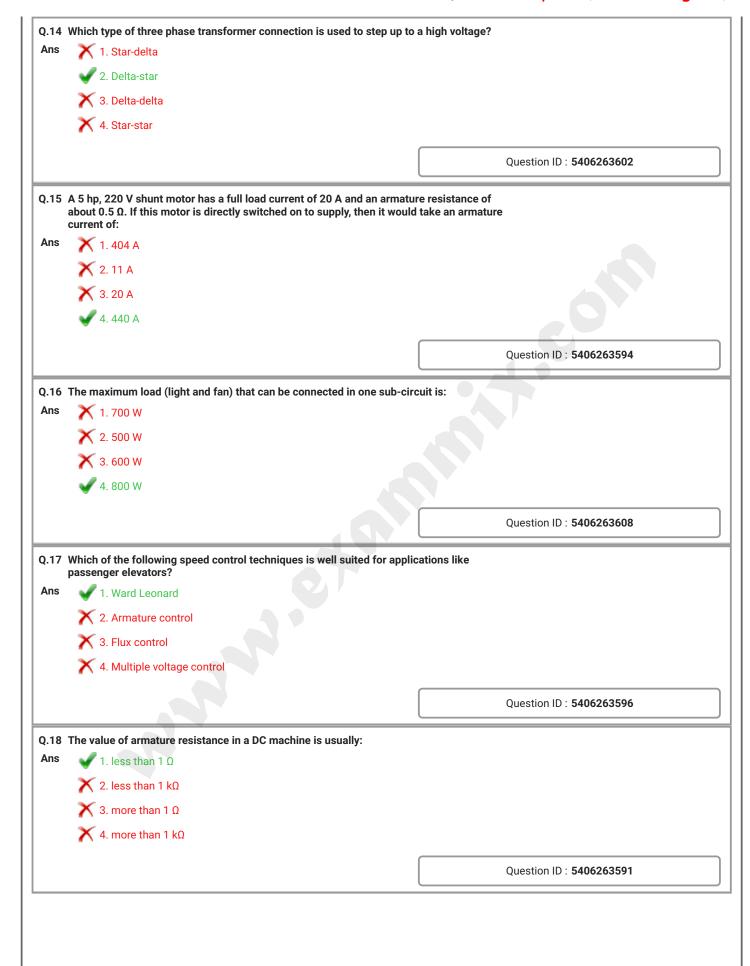
Participant ID WWW.exammix.com Participant Name Az Online Test Centre Test Center Name Az Online Test Centre State 1 3:30 AM - 10:30 AM Subject Junior Engineer (Electrical) Secton: Discipline1		
Participant ID WWW.eXammix.com Participant Name WWW.eXammix.com Test Center Name 42 Online Test Centre Test Jone 19/03/2021 Test Time 8:30 AM - 10:30 AM Subject Junior Engineer (Electrical) Section : Discipline1 0.1 An amplifier has a voltage gain of 800 and β = 40. The power gain of the amplifier is: Am 1, 32000 2, 2200 3.20 3, 3.20 Question ID : 5406263581 Output Discipline1 Out	200	GOVT. OF NCT OF DELHI
Participant ID WWW.eXammix.com Participant Name Az Online Test Centre Test Date 19/03/2021 Section: Discipline1		25.5
Participant ID www.exammix.com Test Center Name Az Online Test Centre Test Date 19/03/2021 Test Date 19/03/2021 Test Time 8:30 AM 10:30 AM Subject Junior Engineer (Electrical) Section : Discipline1 Question ID iscipline1 Question ID : 5406263581	füreft andrerer fran ve	
Participant Name WWW. EXamining X. COIN Test Center Name Az Online Test Centre Test Date 19/03/2021 Test Time 8:30 AM - 10:30 AM Subject Junior Engineer (Electrical) Section: Discipline1 Q.1 An amplifier has a voltage gain of 800 and β = 40. The power gain of the amplifier is: Ans 1.32000 X 2. 3200 3.20 X 3. 20 4.320 Question ID: 5406263581	Derticinent ID	
Test Center Name Az Online Test Centre Test Date 19/03/2021 Test Time 8:30 AM - 10:30 AM Subject Junior Engineer (Electrical) Section: Discipline1 Q.1 An amplifier has a voltage gain of 800 and β = 40. The power gain of the amplifier is: Ans 1.32000 ✓ 2.3200 3.20 ✓ 4.320 Question ID: 5406263581 Question Vice poin internal resistance of 0.02 Ω. It is used to supply current to the head lights. If the total load is equal to 200 W, then the voltage dop in internal resistance is: Ans 1.14.28 V ✓ 2.028 V 3.1.428 V ✓ 3.1.428 V Question ID: 5406263571 Question ID: 5406263571 Question ID: 5406263571		-www.exammix.com
Test Date 19/03/2021 Test Time 8:30 AM - 10:30 AM Subject Junior Engineer (Electrical) Section : Discipline1 Q.1 An amplifier has a voltage gain of 800 and β = 40. The power gain of the amplifier is: Ans 1.32000 X 2.3200 3.20 X 4.320 Question ID : 5406263581 Q.2 A lead acid battery fitted in a truck develops 14 V and has an internal resistance of 0.02 Ω. It is used to supply current to the head lights. If the total load is equal to 200 W, then the Voltage drop in internal resistance is: Ans X 1.1428 V X 3.1428 V Question ID : 5406263571 Question ID : 5406263571 Question ID : 5406263571 Question ID : 5406263571 Question ID : 5406263571	· ·	Az Online Test Centre
Test Time 8:30 AM - 10:30 AM Subject Junior Engineer (Electrical) Section : Discipline1 Q.1 An amplifier has a voltage gain of 800 and β = 40. The power gain of the amplifier is: Ans 1.32000 X 2.3200 X 3.20 X 4.320 Question ID : 5406263581 Q.2 A lead acid battery fitted in a truck develops 14 V and has an internal resistance of 0.02 Ω. It is used to supply current to the head lights. If the total load is equal to 200 W, then the voltage drop in internal resistance is: Ans 1.142.8 V 2.02.8 V Question ID : 5406263571 Q.3 The maximum peak to peak voltage of an AM wave is 20 mV and the minimum peak to peak voltage of an AM wave is 20 mV and the minimum peak to peak voltage of an AM wave is 20 mV and the minimum peak to peak voltage of an AM wave is 20 mV and the minimum peak to peak voltage of an AM wave is 20 mV and the minimum peak to peak voltage of an AM wave is 20 mV and the minimum peak to peak voltage of an AM wave is 20 mV and the minimum peak to peak voltage of an AM wave is 20 mV and the minimum peak to peak voltage of an AM wave is 20 mV and the minimum peak to peak voltage of an AM wave is 20 mV and the minimum peak to peak voltage of an AM wave is 20 mV and the minimum peak to peak voltage of an AM wave is 20 mV and the minimum peak to peak voltage of an AM wave is 20 mV and the minimum peak to peak voltage of an AM wave is 20 mV and the minimum peak to peak voltage of an AM wave is 20 mV and the minimum peak to peak voltage of an AM wave is 20 mV and the minimum peak to peak voltage of an AM wav		
Subject Junior Engineer (Electrical) Section : Discipline1 Q.1 An amplifier has a voltage gain of 800 and β = 40. The power gain of the amplifier is: Ans 1.32000 X 2.3200 X 3.20 X 4.320 Question ID : 5406263581	1	
Section: Discipline1 Q.1 Ans amplifier has a voltage gain of 800 and β = 40. The power gain of the amplifier is: Ans ✓ 1.32000 ✓ 2.3200 ✓ 3.20 ✓ 4.320 Question ID: 5406263581 Q.2 A lead acid battery fitted in a truck develops 14 V and has an internal resistance of 0.02 Ω. It is used to supply current to the head lights. If the total load is equal to 200 W, then the voltage drop in internal resistance is: Ans ✓ ✓ 2.028 V ✓ 2.028 V ✓ 3.1428 V ✓ 4.0028 V Question ID: 5406263571 Q.3 The maximum peak to peak voltage of an AM wave is 20 mV and the minimum peak to peak voltage of an AM wave is 20 mV and the minimum peak to peak voltage is 4 mV. The modulation factor is: Ans ✓ ✓ 1.066 ✓ 2.2 ✓ 3.006 ✓ 4.5	<u></u>	
Q.1 An amplifier has a voltage gain of 800 and β = 40. The power gain of the amplifier is: Ans 1.32000 X 2.3200 3.20 X 4.320 Question ID : 5406263581 Q.2 A lead acid battery fitted in a truck develops 14 V and has an internal resistance of 0.02 Ω. It is used to supply current to the head lights. If the total load is equal to 200 W, then the voltage drop in internal resistance is: Ans 1.14.28 V Q.2 0.28 V 3.1.428 V X 3.1.428 V Question ID : 5406263571 Q.3 The maximum peak to peak voltage of an AM wave is 20 mV and the minimum peak to peak voltage is 4 mV. The modulation factor is: Ans 1.0.66 X 2.2 3.0.06 X 3.006 4.5		
Q.1 An amplifier has a voltage gain of 800 and β = 40. The power gain of the amplifier is: Ans 1.32000 X 2.3200 3.20 X 4.320 Question ID : 5406263581 Q.2 A lead acid battery fitted in a truck develops 14 V and has an internal resistance of 0.02 Ω. It is used to supply current to the head lights. If the total load is equal to 200 W, then the voltage drop in internal resistance is: Ans 1.14.28 V Q.2 0.28 V 3.1.428 V X 3.1.428 V Question ID : 5406263571 Q.3 The maximum peak to peak voltage of an AM wave is 20 mV and the minimum peak to peak voltage is 4 mV. The modulation factor is: Ans 1.0.66 X 2.2 3.0.06 X 3.006 4.5		
Ans ✓ 1.32000 ✓ 2.3200 ✓ 3.20 ✓ 4.320 Question ID : 5406263581 Question ID : 5406263581 Question ID : 5406263581 Question ID : 5406263571 Question ID : 5406263571 Qastion ID : 5406263571 Question ID : 5406263571 Qastion ID : 5406263571 Question ID : 5406263571	Section : Discipline1	
 2. 3200 3. 20 4. 320 Question ID : 5406263581 9.2 A lead acid battery fitted in a truck develops 14 V and has an internal resistance of 0.02 0. It is used to supply current to the head lights. If the total load is equal to 200 W, then the voltage drop in internal resistance is: Ans 1. 14.28 V 2. 0.28 V 3. 1.428 V 4. 0.028 V Question ID : 5406263571 9.3 The maximum peak to peak voltage of an AM wave is 20 mV and the minimum peak to peak voltage is 4 mV. The modulation factor is: Ans 1. 0.66 2. 2 3. 0.06 4. 5 	Q.1 An amplifier has a volta	age gain of 800 and β = 40. The power gain of the amplifier is:
 A lead acid battery fitted in a truck develops 14 V and has an internal resistance of 0.02 Ω. It is used to supply current to the head lights. If the total load is equal to 200 W, then the voltage drop in internal resistance is: Ans 1.14.28 V 2.0.28 V 3.1.428 V 4.0.028 V Question ID: 5406263571 9.3 The maximum peak to peak voltage of an AM wave is 20 mV and the minimum peak to peak voltage is 4 mV. The modulation factor is: Ans 1.0.66 2.2 3.0.06 4.5 	Ans 🗹 1. 32000	
 ✓ 4.320 Question ID: 5406263581 Q.2. A lead acid battery fitted in a truck develops 14 V and has an internal resistance of 0.02 0.1 t is used to supply current to the head lights. If the total load is equal to 200 W, then the voltage drop in internal resistance is: Ans ✓ 1.14.28 V ✓ 2.0.28 V ✓ 3.1.428 V ✓ 4.0.028 V Question ID: 5406263571 9.3 The maximum peak to peak voltage of an AM wave is 20 mV and the minimum peak to peak voltage is 4 mV. The modulation factor is: Ans ✓ 1.0.66 ✓ 2.2 ✓ 3.0.06 ✓ 4.5 	🗙 2. 3200	
 ✓ 4.320 Question ID: 5406263581 Q.2. A lead acid battery fitted in a truck develops 14 V and has an internal resistance of 0.02 0.1 t is used to supply current to the head lights. If the total load is equal to 200 W, then the voltage drop in internal resistance is: Ans ✓ 1.14.28 V ✓ 2.0.28 V ✓ 3.1.428 V ✓ 4.0.028 V Question ID: 5406263571 9.3 The maximum peak to peak voltage of an AM wave is 20 mV and the minimum peak to peak voltage is 4 mV. The modulation factor is: Ans ✓ 1.0.66 ✓ 2.2 ✓ 3.0.06 ✓ 4.5 	X 3.20	
Question ID : 5406263581 9.2 A lead acid battery fitted in a truck develops 14 V and has an internal resistance of 0.02 Ω. It is used to supply current to the head lights. If the total load is equal to 200 W, then the voltage drop in internal resistance is: Ans 1.14.28 V 2.0.28 V 3.1.428 V 4.0.028 V Question ID : 5406263571 9.3 The maximum peak to peak voltage of an AM wave is 20 mV and the minimum peak to peak voltage is 4 mV. The modulation factor is: Ans 1.0.66 2.2 3.0.06 4.5		
 Q.2 A lead acid battery fitted in a truck develops 14 V and has an internal resistance of 0.02 Ω. It is used to supply current to the head lights. If the total load is equal to 200 W, then the voltage drop in internal resistance is: Ans 1.14.28 V 2.0.28 V 3.1.428 V 4.0.028 V Question ID : 5406263571 Question ID : 5406263571 Question ID : 5406263571 Question ID : 5406263571 Question ID : 66 2.2 3.0.06 4.5 	4. 320	
is used to supply current to the head lights. If the total load is equal to 200 W, then the voltage drop in internal resistance is: Ans		Question ID : 5406263581
Question ID : 5406263571 Question ID : 5406263571 Question ID : 5406263571 Ans ↓ 1.0.66 ↓ 2.2 ↓ 3.0.06 ↓ 4.5	2. 0.28 V	
 Q.3 The maximum peak to peak voltage of an AM wave is 20 mV and the minimum peak to peak voltage is 4 mV. The modulation factor is: Ans 1.0.66 2.2 3.0.06 4.5 	🗙 4. 0.028 V	
 Q.3 The maximum peak to peak voltage of an AM wave is 20 mV and the minimum peak to peak voltage is 4 mV. The modulation factor is: Ans 1.0.66 2.2 3.0.06 4.5 		
voltage is 4 mV. The modulation factor is: Ans $1.0.66$ 2.2 3.0.06 4.5		Question ID : 5406263571
voltage is 4 mV. The modulation factor is: Ans $1.0.66$ 2.2 3.0.06 4.5	0.3 The maximum neak to	neak voltage of an AM wave is 20 mV and the minimum neak to neak
 ★ 2.2 ★ 3.0.06 ★ 4.5 	voltage is 4 mV. The m	odulation factor is:
 ★ 3. 0.06 ★ 4. 5 	Ans v 1. 0.66	
 ★ 3.0.06 ★ 4.5 	2.2	
	3. 0.06	
Question ID : 5406263583	4.5	
		Question ID : 5406263583
	X 3. 0.06 X 4. 5	
Question ID : 5406263583		
		Question ID : 5400205005

Q.4	The value of series resistor that is required to limit the current through a with a forward voltage drop of 0.6 V when connected to a 20 V supply is:	n LED to 10 mA
Ans	✔ 1. 1.94 kΩ	
	🗙 2. 1.94 Ω	
	🗙 3. 194 kΩ	
	🗙 4. 19.4 kΩ	
		Question ID : 5406263579
Q.5	The alternating voltage generated in the DC generator can be converted by a device called	into direct voltage
Ans	🗙 1. pole pitch	
	🖌 2. commutator	
	X 3. varactor	
	X 4. armature	
	• •	
		Question ID : 5406263587
0.6	In a DO manhing, and and unter line at the manuatic flux and	in the direction of
Q.0	In a DC machine, each conductor lies at to the magnetic flux and its movement.	in the direction of
Ans	🗙 1. 120°	
	✔ 2. 90°	
	X 3.0°	
	X 4. 180°	
		Question ID : 5406263588
Q.7 Ans	If the voltage source has a very high internal impedance when compared load impedance, then it can be considered as: 1. internal resistance 2. constant current source 3. constant voltage source	to the external
	X 4. external resistance	
		Question ID : 5406263572
Q.8	The maximum power dissipation of a transistor is 200 mW. If V_{ce} = 10 V, maximum collector current that can be allowed without destruction of the	then the value of
	maximum collector current that can be allowed without destruction of the X 1. 2000 mA	then the value of
	maximum collector current that can be allowed without destruction of th 1. 2000 mA 2. 200 mA	then the value of
	maximum collector current that can be allowed without destruction of the X 1. 2000 mA	then the value of
	maximum collector current that can be allowed without destruction of th 1. 2000 mA 2. 200 mA	then the value of
Q.8 Ans	maximum collector current that can be allowed without destruction of the 1. 2000 mA 2. 200 mA 3. 20 mA	then the value of

Q.9	The intrinsic stand-off ratio for a UJT is determined to be 0.6. If the interaction 10 kΩ, then the values of R_{b1} and R_{b2} are:	r-base resistance is
Ans	\checkmark 1. 6 kΩ and 4 kΩ	
	🗙 2. 6 kΩ and 2 kΩ	
	🗙 3. 2 kΩ and 4 kΩ	
	🗙 4. 4 kΩ and 8 kΩ	
		Question ID : 5406263586
	In a common base connection, IE = 2 mA, IC = 0.5 mA. Calculate the val	ue of IB:
Ans	🗙 1.1 mA	
	🗙 2. 4 mA	
	✔ 3. 1.5 mA	
	🗙 4. 0.5 mA	
		Question ID : 5406263580
Q.11	A DC source generating 400 V has an internal resistance of 500 Ω . The	value of load current
	when the load resistance is 50 Ω is:	
Ans	1. 0.8	
	2. 1.25	
	★ 3.8	
	4. 0.72	
		Question ID : 5406263573
	The value of charge on an electron is:	
Ans	X 1. 1 C	
	\checkmark ² . 1.602 × 10 ⁻¹⁹ C	
	\times ³ 1.5 × 10 ⁻¹⁹ C	
	\times 4. 1.602 × 10 ⁻¹² C	
		Question ID : 5406263575
	A hot cathode gas triode is also called as:	
Q.13	A not cathode gas thode is also called as.	
Q.13 Ans	1. thyratron	
	1. thyratron	
	 1. thyratron 2. TRIAC 	
	1. thyratron	
	 1. thyratron 2. TRIAC 3. gas diode 	

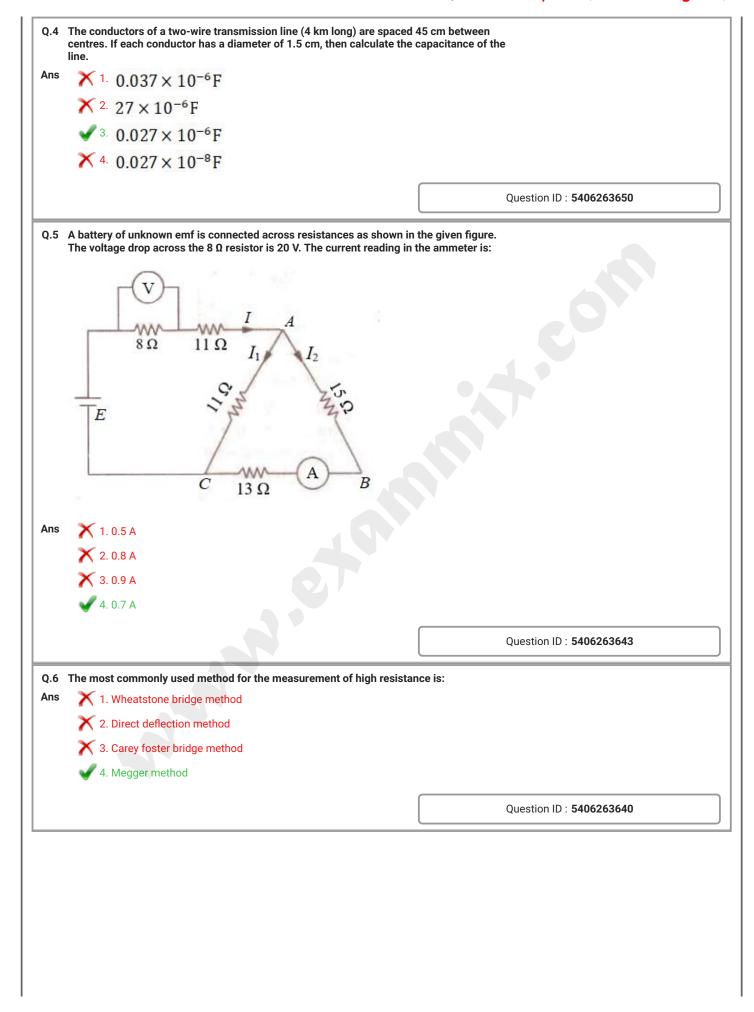

Q.14	If the input frequency of a sine wave applied to a half wave rectifier is 1 frequency of the output wave is:	ou Hz, then the
Ans	🗙 1. 0 Hz	
	🗙 2. 200 Hz	
	🗙 3. 50 Hz	
	✔ 4. 100 Hz	
		Question ID : 5406263577
Q.15	The armature of a DC generator has 10 slots for a two pole winding. The number of slots/pole is:	e value of the
Ans	X 1.2	
	2. 10	
	3. 20	
	4.5	
		Question ID : 5406263590
Q.16	A half wave rectifier is used to supply 50 V DC to a resistive load of 80 f resistance of 12 Ω . The AC voltage required is:	Ω. The diode has a
Ans	🗙 1. cannot be found	
	🗙 2. 162 V	
	 ✓ 2. 162 V ✓ 3. 180.6 V 	
	✓ 3. 180.6 V	
	✓ 3. 180.6 V	Question ID : 5406263578
Q.17	✓ 3. 180.6 V	Question ID : 5406263578
Q.17 Ans	✓ 3. 180.6 V ★ 4. 0	Question ID : 5406263578
	 3. 180.6 V 4. 0 If a 4 pole generator has 16 coils, then the number of slots is equal to:	Question ID : 5406263578
	 3. 180.6 V 4. 0 If a 4 pole generator has 16 coils, then the number of slots is equal to: 1. 64 2. 4 3. 16 	Question ID : 5406263578
	 3. 180.6 V 4. 0 If a 4 pole generator has 16 coils, then the number of slots is equal to: 1. 64 2. 4 	Question ID : 5406263578
	 3. 180.6 V 4. 0 If a 4 pole generator has 16 coils, then the number of slots is equal to: 1. 64 2. 4 3. 16 	
	 3. 180.6 V 4. 0 If a 4 pole generator has 16 coils, then the number of slots is equal to: 1. 64 2. 4 3. 16 	Question ID : 5406263578
Ans	 3. 180.6 V 4. 0 If a 4 pole generator has 16 coils, then the number of slots is equal to: 1. 64 2. 4 3. 16 4. 8 	Question ID : 5406263589
Ans Q.18	 3. 180.6 V 4. 0 If a 4 pole generator has 16 coils, then the number of slots is equal to: 1. 64 2. 4 3. 16 	Question ID : 5406263589
Ans Q.18	 3. 180.6 V 4. 0 If a 4 pole generator has 16 coils, then the number of slots is equal to: 1. 64 2. 4 3. 16 4. 8 Which of the following is used as a thermionic emitter or as a cathode i	Question ID : 5406263589
Ans Q.18	 3. 180.6 V 4. 0 If a 4 pole generator has 16 coils, then the number of slots is equal to: 1. 64 2. 4 3. 16 4. 8 Which of the following is used as a thermionic emitter or as a cathode in the following is used as a thermionic emitter or as a cathode in the following is used as a thermionic emitter or as a cathode in the following is used as a thermionic emitter or as a cathode in the following is used as a thermionic emitter or as a cathode in the following is used as a thermionic emitter or as a cathode in the following is used as a thermionic emitter or as a cathode in the following is used as a thermionic emitter or as a cathode in the following is used as a thermionic emitter or as a cathode in the following is used as a thermionic emitter or as a cathode in the following is used as a thermionic emitter or as a cathode in the following is used as a thermionic emitter or as a cathode in the following is used as a thermionic emitter or as a cathode in the following is used as a thermionic emitter or as a cathode in the following is used as a thermionic emitter or as a cathode in the following is used as a thermionic emitter or as a cathode in the following is used as a thermionic emitter or as a cathode in the following is used as a the following is used as a thermionic emitter or as a cathode in the following is used as a the following is used	Question ID : 5406263589
Ans	 3. 180.6 V 4. 0 If a 4 pole generator has 16 coils, then the number of slots is equal to: 1. 64 2. 4 3. 16 4. 8 Which of the following is used as a thermionic emitter or as a cathode i 1. Photodiode 2. Oxide coated cathode 3. Thoriated tungsten 	Question ID : 5406263589
Ans Q.18	 3. 180.6 V 4. 0 If a 4 pole generator has 16 coils, then the number of slots is equal to: 1. 64 2. 4 3. 16 4. 8 Which of the following is used as a thermionic emitter or as a cathode i 1. Photodiode 2. 0xide coated cathode 	Question ID : 5406263589

	The decimal number of the octal number 372 is:	
Ans	1. 200	
	X 2. 215	
	V 3. 250	
	X 4. 210	
		Question ID : 5406263585
J.20	The equivalent binary number for the decimal number	23 is:
Ans	🗙 1. 10011	
	✔ 2. 10111	
	🗙 3. 1011	
	🗙 4. 101	
		Question ID : 5406263584
		0.5
ectio	on : Discipline2	
	The distribution factor for a single phase alternator have are wound is: 1. 0.756 2. 0.837	ving o slots/pole when all the slots
	are wound is: 1. 0.756 2. 0.837 3. 0.644	
	are wound is: 1. 0.756 2. 0.837	Question ID : 5406263606
Ans	are wound is: 1. 0.756 2. 0.837 3. 0.644 4. 0.545	Question ID : 5406263606
Ans Q.2	are wound is: 1. 0.756 2. 0.837 3. 0.644 4. 0.545 A 12-pole, 3-phase star connected alternator has 72 sl then the speed of rotation if the frequency is 50 Hz is:	Question ID : 5406263606
Ans Q.2	are wound is: 1. 0.756 2. 0.837 3. 0.644 4. 0.545 A 12-pole, 3-phase star connected alternator has 72 sl then the speed of rotation if the frequency is 50 Hz is: 1. 600 rpm	Question ID : 5406263606
Ans Q.2	are wound is: 1. 0.756 2. 0.837 3. 0.644 4. 0.545 A 12-pole, 3-phase star connected alternator has 72 sl then the speed of rotation if the frequency is 50 Hz is: 1. 600 rpm 2. 200 rpm	Question ID : 5406263606
Ans Q.2	are wound is: 1. 0.756 2. 0.837 3. 0.644 4. 0.545 A 12-pole, 3-phase star connected alternator has 72 sl then the speed of rotation if the frequency is 50 Hz is: 1. 600 rpm	Question ID : 5406263606
Ans Q.2	are wound is: 1. 0.756 2. 0.837 3. 0.644 4. 0.545 A 12-pole, 3-phase star connected alternator has 72 sl then the speed of rotation if the frequency is 50 Hz is: 1. 600 rpm 2. 200 rpm	Question ID : 5406263606
Ans Q.2	are wound is: 1. 0.756 2. 0.837 3. 0.644 4. 0.545 A 12-pole, 3-phase star connected alternator has 72 sl then the speed of rotation if the frequency is 50 Hz is: 1. 600 rpm 2. 200 rpm 3. 400 rpm 3. 400 rpm	Question ID : 5406263606 ots. If the flux per pole is 0.0988 Wb,
Ans Q.2	are wound is: 1. 0.756 2. 0.837 3. 0.644 4. 0.545 A 12-pole, 3-phase star connected alternator has 72 sl then the speed of rotation if the frequency is 50 Hz is: 1. 600 rpm 2. 200 rpm 3. 400 rpm 3. 400 rpm	Question ID : 5406263606
Ans Q.2 Ans Q.3	are wound is: 1. 0.756 2. 0.837 3. 0.644 4. 0.545 A 12-pole, 3-phase star connected alternator has 72 sl then the speed of rotation if the frequency is 50 Hz is: 1. 600 rpm 2. 200 rpm 3. 400 rpm 4. 500 rpm 4. 500 rpm	Question ID : 5406263606 ots. If the flux per pole is 0.0988 Wb, Question ID : 5406263607
Ans Q.2 Ans Q.3	are wound is: 1. 0.756 2. 0.837 3. 0.644 4. 0.545 A 12-pole, 3-phase star connected alternator has 72 sl then the speed of rotation if the frequency is 50 Hz is: 1. 600 rpm 2. 200 rpm 3. 400 rpm 4. 500 rpm 4. 500 rpm	Question ID : 5406263606 ots. If the flux per pole is 0.0988 Wb, Question ID : 5406263607
Ans Q.2 Ans Q.3	are wound is: 1. 0.756 2. 0.837 3. 0.644 4. 0.545 A 12-pole, 3-phase star connected alternator has 72 sl then the speed of rotation if the frequency is 50 Hz is: 1. 600 rpm 2. 200 rpm 3. 400 rpm 4. 500 rpm 1. 500 rpm 1. 1449 rpm	Question ID : 5406263606 ots. If the flux per pole is 0.0988 Wb, Question ID : 5406263607
Ans Q.2 Ans Q.3	are wound is: 1. 0.756 2. 0.837 3. 0.644 4. 0.545 A 12-pole, 3-phase star connected alternator has 72 sl then the speed of rotation if the frequency is 50 Hz is: 1. 600 rpm 2. 200 rpm 3. 400 rpm 4. 500 rpm 4. 500 rpm 2. 1. 1449 rpm 2. 1200 rpm 2. 1200 rpm	Question ID : 5406263606 ots. If the flux per pole is 0.0988 Wb, Question ID : 5406263607
Ans Q.2 Ans Q.3	are wound is: 1. 0.756 2. 0.837 3. 0.644 4. 0.545 A 12-pole, 3-phase star connected alternator has 72 sl then the speed of rotation if the frequency is 50 Hz is: 1. 600 rpm 2. 200 rpm 3. 400 rpm 4. 500 rpm 4. 500 rpm 2. 1. 1449 rpm 2. 1200 rpm 3. 1000 rpm 3. 1000 rpm	Question ID : 5406263606 ots. If the flux per pole is 0.0988 Wb, Question ID : 5406263607
Ans Q.2 Ans Q.3	are wound is: 1. 0.756 2. 0.837 3. 0.644 4. 0.545 A 12-pole, 3-phase star connected alternator has 72 sl then the speed of rotation if the frequency is 50 Hz is: 1. 600 rpm 2. 200 rpm 3. 400 rpm 4. 500 rpm 4. 500 rpm 2. 1. 1449 rpm 2. 1200 rpm 2. 1200 rpm	Question ID : 5406263606 ots. If the flux per pole is 0.0988 Wb, Question ID : 5406263607

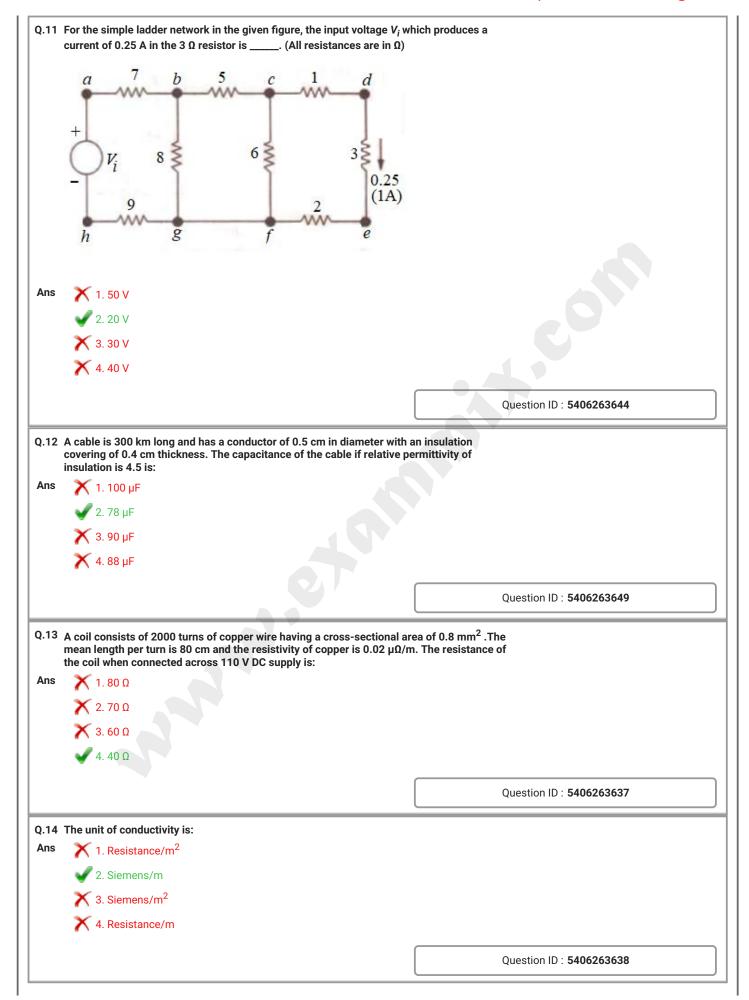
Downloaded from - www.exammix.com

Q.4	Multi strand conductors are preferred over solid conductors because the	iey are:
Ans	X 1. Compact	
	🗙 2. Hygroscopic	
	X 3. Economical	
	🖌 4. Durable	
		Question ID : 5406263609
Q.5	The reversal of current in a coil as the coil passes the brush axis is call	ed:
Ans	🗙 1. motoring action	
	🗙 2. generator action	
	🗙 3. armature reaction	
	4. commutation	
		Question ID : 5406263592
Q.6	Losses in a DC machine are mainly due to:	
Ans	🗙 1. mechanical losses	
	X 2. iron losses	
	✔ 3. copper losses	
	🗙 4. friction and windage losses	
		Question ID : 5406263595
Q.7	A 230 V DC shunt motor takes a no load current of 2 A and runs at 120	
Ans	current is 40 A and armature resistance is 0.25 Ω , then the speed on fu 1.1500 rpm	ll load is:
	× 2. 1250 rpm	
	3. 1150 rpm	
	× 4. 1200 rpm	
	4. 1200 lpill	
		Question ID : 5406263598
0.0	Which of the following is NOT a speed central method of a DC shunt m	
Q.8 Ans	Which of the following is NOT a speed control method of a DC shunt motion 1. Voltage control	otor?
	X 2. Armature control	
	3. Flux control	
	4. Series parallel control	
		Question ID : 5406263593

Q.9	For a 6 pole, 50 Hz, three phase induction motor, the speed will be:	
Ans	V 1. 1000 rpm	
	X 2. 1500 rpm	
	X 3. 2000 rpm	
	X 4. 3000 rpm	
		Question ID : 5406263603
0 10	In a EQ 1/14 transformer if the iron loss is EQQ W and full load conner I	and is 200 W that the
	In a 50 kVA transformer, if the iron loss is 500 W and full load copper I full load efficiency at 0.8 pf lagging is:	
Ans	🗙 1. 100 percent	
	X 2. 94 percent	
	🗙 3. 96.6 percent	
	✔ 4. 96.85 percent	
		Question ID : 5406263601
Ans	🗙 1. 66	
	 2. 606 3. 60 4. 660 	
	X 3. 60	Question ID : 5406263599
Q.12	X 3. 60	Question ID : 5406263599
	 ★ 3.60 ↓ 4.660 	Question ID : 5406263599
	X 3. 60 4. 660	Question ID : 5406263599
	 3. 60 4. 660 Impedance test in a transformer is used to determine: 1. only resistance	Question ID : 5406263599
Q.12 Ans	 3. 60 4. 660 Impedance test in a transformer is used to determine: 1. only resistance 2. core losses 	Question ID : 5406263599
	 3. 60 4. 660 Impedance test in a transformer is used to determine: 1. only resistance 2. core losses 3. only reactance 	
	 3. 60 4. 660 Impedance test in a transformer is used to determine: 1. only resistance 2. core losses 3. only reactance 	Question ID : 5406263599 Question ID : 5406263600
Ans	 3. 60 4. 660 Impedance test in a transformer is used to determine: 1. only resistance 2. core losses 3. only reactance 4. full load copper losses 	
Ans Q.13	 3. 60 4. 660 Impedance test in a transformer is used to determine: 1. only resistance 2. core losses 3. only reactance 	
Ans	 3. 60 4. 660 Impedance test in a transformer is used to determine: 1. only resistance 2. core losses 3. only reactance 3. only reactance 4. full load copper losses are normally used to connect pendant lamps. 1. Fan roses	
Ans Q.13	 3. 60 4. 660 Impedance test in a transformer is used to determine: 1. only resistance 2. core losses 3. only reactance 4. full load copper losses are normally used to connect pendant lamps. 1. Fan roses 2. Ceiling roses 	
Ans Q.13	 3. 60 4. 660 Impedance test in a transformer is used to determine: 1. only resistance 2. core losses 3. only reactance 4. full load copper losses are normally used to connect pendant lamps. 1. Fan roses 2. Ceiling roses 3. Connectors 	
Ans Q.13	 3. 60 4. 660 Impedance test in a transformer is used to determine: 1. only resistance 2. core losses 3. only reactance 4. full load copper losses are normally used to connect pendant lamps. 1. Fan roses 2. Ceiling roses 	

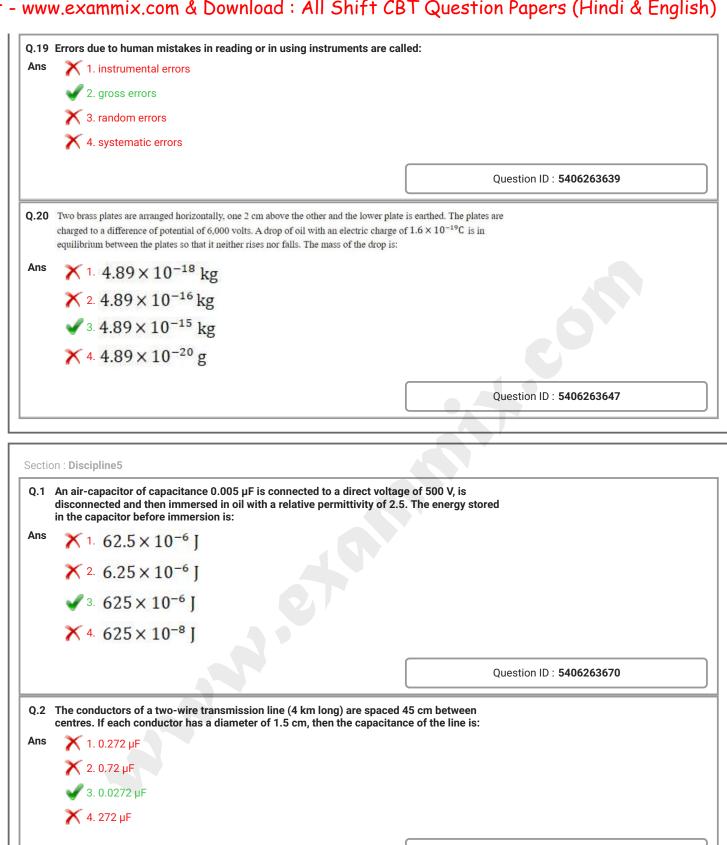

		n motor is:
Ans	The stator windings used by four speed squirrel cage induction	
Ans	X 1.1	
	2 . 2	
	X 3. 4	
	4. 3	
		Question ID : 5406263604
		Question ID : 3406263604
Q.20	The best way to produce reversing voltage to neutralise the rea	actance voltage is by using:
Ans	X 1. compensating winding	
	🗙 2. carbon brushes	
	🗙 3. equaliser rings	
	✔ 4. interpoles	
		Question ID : 5406263597
Sectio	on : Discipline3	
Q.1 Ans	🗙 1. exceeding 1/5000	
	 2. not exceeding 1/5000 3. exceeding 2/5000 	
	2. not exceeding 1/5000	Question ID : 5406263612
Ans	 2. not exceeding 1/5000 3. exceeding 2/5000 4. not exceeding 2/5000 	Question ID : 5406263612
Ans Q.2	 2. not exceeding 1/5000 3. exceeding 2/5000 	or one unit of energy. The
Ans Q.2	 2. not exceeding 1/5000 3. exceeding 2/5000 4. not exceeding 2/5000 An energy meter is designed to make 100 revolutions of disc for number of revolutions made by it when connected to a load car pf for an hour is: 1. 368 2. 600 3. 356 	or one unit of energy. The
Ans Q.2 Ans	 2. not exceeding 1/5000 3. exceeding 2/5000 4. not exceeding 2/5000 An energy meter is designed to make 100 revolutions of disc for number of revolutions made by it when connected to a load car pf for an hour is: 1. 368 2. 600 3. 356 4. 628 	or one unit of energy. The rrying 40 A at 230 V and 0.4
Ans Q.2 Ans	 2. not exceeding 1/5000 3. exceeding 2/5000 4. not exceeding 2/5000 An energy meter is designed to make 100 revolutions of disc for number of revolutions made by it when connected to a load car of for an hour is: 1. 368 2. 600 3. 356 4. 628 Steel towers are required to be painted in order to:	or one unit of energy. The rrying 40 A at 230 V and 0.4
Ans Q.2 Ans	 2. not exceeding 1/5000 3. exceeding 2/5000 4. not exceeding 2/5000 An energy meter is designed to make 100 revolutions of disc for number of revolutions made by it when connected to a load car pf for an hour is: 1. 368 2. 600 3. 356 4. 628 Steel towers are required to be painted in order to: 1. prevent lightning	or one unit of energy. The rrying 40 A at 230 V and 0.4
Ans Q.2 Ans	 2. not exceeding 1/5000 3. exceeding 2/5000 4. not exceeding 2/5000 An energy meter is designed to make 100 revolutions of disc for number of revolutions made by it when connected to a load car pf for an hour is: 1. 368 2. 600 3. 356 4. 628 Steel towers are required to be painted in order to: 1. prevent lightning 2. prevent moisture 	or one unit of energy. The rrying 40 A at 230 V and 0.4
Ans Q.2 Ans Q.3	 2. not exceeding 1/5000 3. exceeding 2/5000 4. not exceeding 2/5000 An energy meter is designed to make 100 revolutions of disc for number of revolutions made by it when connected to a load car of for an hour is: 1. 368 2. 600 3. 356 4. 628 Steel towers are required to be painted in order to: 1. prevent lightning 2. prevent moisture 3. prevent electric shock 	or one unit of energy. The rrying 40 A at 230 V and 0.4
Ans Q.2 Ans	 2. not exceeding 1/5000 3. exceeding 2/5000 4. not exceeding 2/5000 An energy meter is designed to make 100 revolutions of disc for number of revolutions made by it when connected to a load car pf for an hour is: 1. 368 2. 600 3. 356 4. 628 Steel towers are required to be painted in order to: 1. prevent lightning 2. prevent moisture 	or one unit of energy. The rrying 40 A at 230 V and 0.4

0.4	The unit of magnetic field strength is:			
Ans	1. Wb			
	X 2. Wb/m			
	 ✓ 3. A/m 			
	X 4. A			
		Question ID : 5406263620		
	Tungsten is selected as filament material because of its:			
Ans	X 1. high temperature coefficient			
	X 2. high vapour pressure			
	✔ 3. high melting point			
	🗙 4. low resistivity			
		Question ID : 5406263614		
		Question P. 340200014		
Q.6	A 2 mA meter with an internal resistance of 100 Ω is to be converted to The value of power consumption of the meter is:	150 mA ammeter.		
Ans	✓ 1.30 mW			
	🗙 2. 30 W			
	X 3. 13 W			
	× 4.10 W			
		Question ID : 5406263629		
Q.7	If a voltmeter uses $4\frac{1}{2}$ digit display, then its resolu	tion is:		
	2	uon 15.		
Ans	X 1. 0.001			
	2.0.1			
	X 3. 0.01			
	4. 0.0001			
		Question ID : 5406263628		
Q.8 Ans	The type of starter recommended for a 20 kW squirrel cage induction m	notor is:		
4115	X 1. star - delta starter			
	X 2. Direct On line Starter			
	✓ 3. auto - transformer starter			
	🗙 4. stator resistance starter			
		Question ID : 5406263613		


Ans	V 1. Resistors	
	🗙 2. Busbars	
	🗙 3. Circuit breakers	
	X 4. Insulators	
		Question ID : 5406263616
	A 2 mA meter with an internal resistance of 100 Ω is to be converted ammeter. The value of shunt resistance required is:	to 0 – 150 mA
ns	X 1. 1.5	
	v 2. 1.3	
	X 3.2	
	4. 2.3	
		Question ID : 5406263626
.11	To provide service connection to a consumer having a load of 1 kW, t	he size of the copper
ns	conductor should be: X 1. 20 SWG	
	2. 10 SWG	
	× 3. 15 SWG	
	X 4. 12 SWG	
	4 . 12 SWG	
		Question ID : 5406263618
.12	The unit of mass is:	
Ans	X 1. Metre	
	🗸 2. Kilogram	
	X 3. Mole	
	X 4. Second	
		Question ID : 5406263619
	Which of the following surge diverters is used for the protection agai	nst dangerous
ns	voltages? X 1. Expulsion type arrester	
	2. Thyrite arrester	
	X 3. Horn gap arrester	
	X 4. Electrolytic arrester	
		Question ID : 5406263617

ns	Which of the following is NOT an AC bridge?	
	1. Kelvin's bridge	
	2. Capacitance comparison bridge	
	X 3. Hay's bridge	
	X 4. Anderson's bridge	
	4. Anderson's bridge	
		Question ID : 5406263630
0.15	Bridge circuits work on the	
Ans	1. null principle	
	X 2. balancing principle	
	 3. null indication principle 	
	× 4. KVL	
	4. KVL	
		Question ID : 5406263621
0 16	The average resistance of a human body is:	
Ans	\sim 1.1000 Ω	
	2. 470 Ω	
	Χ 3. 570 Ω	
	Χ 4.10 Ω	
	4.10 1	
		Question ID : 5406263611
0 17	The unit of sensitivity of a wheatstone bridge is:	
Ans	1. degrees/V	
	2. radians/V	
	3. mm	
	4. radians/µA	
	A. Tadians/ µA	
		Question ID : 5406263622
0.18	Which of the following is NOT a detector used in AC bridges?	Question ID : 5406263622
	Which of the following is NOT a detector used in AC bridges?	Question ID : 5406263622
Q.18 Ans	X 1. Vibration galvanometers	Question ID : 5406263622
	 1. Vibration galvanometers 2. Tuneable amplifiers 	Question ID : 5406263622
	 1. Vibration galvanometers 2. Tuneable amplifiers 3. Vibrational watt meters 	Question ID : 5406263622
	 1. Vibration galvanometers 2. Tuneable amplifiers 	Question ID : 5406263622

Ans	🗙 1. 8705 V	
	X 2. 8075 V	
	✓ 3. 8750 V	
	× 4. 875 V	
	4.0707	
		Question ID : 5406263627
Q.20	The bridge that is used to measure the	e resistance of motor winding is:
Ans	1. Wheatstone bridge	-
	X 2. De-sauty's bridge	
	X 3. Kelvin's bridge	
	X 4. Maxwell's bridge	
	•	
		Question ID : 5406263623
	on : Discipline4	
Q.1 Ans	Sensitivity of voltmeters is expressed	l in:
A110	Χ 1. kΩ	
	Χ 2. Ω/Α	
	Χ 3. κΩ/Α	
	✔ 4. kΩ/V	
		Question ID : 5406263633
Q.2	A three phase, 4 pole, 400 V, 50 Hz inc is:	Question ID : 5406263633 duction motor runs with a speed of 1440 rpm. The slip
	is:	
	is: 1. 4 percent	
	is: 1. 4 percent 2. 5 percent	
	is: 1. 4 percent 2. 5 percent 3. 6 percent	duction motor runs with a speed of 1440 rpm. The slip
Q.2 Ans	is: 1. 4 percent 2. 5 percent 3. 6 percent	
Ans	is: 1. 4 percent 2. 5 percent 3. 6 percent	duction motor runs with a speed of 1440 rpm. The slip Question ID : 5406263636
Ans	is: 1. 4 percent 2. 5 percent 3. 6 percent 4. 3 percent	duction motor runs with a speed of 1440 rpm. The slip Question ID : 5406263636
Ans Q.3	is: 1. 4 percent 2. 5 percent 3. 6 percent 4. 3 percent The permeability of free space in the of 1. 10^{-7}	duction motor runs with a speed of 1440 rpm. The slip Question ID : 5406263636
Ans Q.3	is: 1. 4 percent 2. 5 percent 3. 6 percent 4. 3 percent The permeability of free space in the of 1. 10^{-7} 2. 1	duction motor runs with a speed of 1440 rpm. The slip Question ID : 5406263636
Ans Q.3	is: 1. 4 percent 2. 5 percent 3. 6 percent 4. 3 percent The permeability of free space in the of 1. 10^{-7} 2. 1 3. 0	duction motor runs with a speed of 1440 rpm. The slip Question ID : 5406263636
Ans Q.3	is: 1. 4 percent 2. 5 percent 3. 6 percent 4. 3 percent The permeability of free space in the of 1. 10^{-7} 2. 1	duction motor runs with a speed of 1440 rpm. The slip Question ID : 5406263636



	A parallel-plate capacitor has plates 0.15 mm apart and dielectric with relative permittivi intensity and the voltage between plates if the surface charge is $5 \times 10^{-4} \mu C/cm^2$.	ty of 3. Find the electric field
Ans	X 1.1.82 V	
	× 2. 4.82 V	
	X 3. 5.82 V	
	✓ 4. 2.82 V	
	4. 2.82 V	
		Question ID : 5406263648
Q.8	Under resonance conditions, the torque acting on a moving coil:	
Ans	🗙 1. gets reduced to half	
	✔ 2. is 0	
	X 3. gets doubled	
	X 4. is 1	
		Question ID : 5406263632
Q.9	Which of the following devices can be used to determine the sequence	e of each of the three
Ans	phases of a three phase supply? X 1. Positive sequence indicator	
	2. Zero sequence indicator	
	3. Phase sequence indicator	
	X 4. Negative sequence indicator	
		Question ID : 5406263635
	Which of the following is NOT a type of digital voltmeter?	
Ans	X 1. Integrating type digital voltmeter	
	2. Sine type digital voltmeter	
	X 3. Ramp type digital voltmeter	
	X 4. Continuous balance type digital voltmeter	
		Question ID : 5406263641

	A current of 80 A flows for 1 hour in a resistance acr value of velocity with which a weight of 1 tonne must shall be equal to the energy dissipated in the resistant	nce is:
Ans	X 1.1000 m/s	
	🗙 2. 1300 m/s	
	X 3. 1200 m/s	
	✓ 4. 1152 m/s	
		Question ID : 5406263645
Q.16	A capacitor of 4 μ F capacitance is charged to a p.d. with an uncharged capacitor of 2 μ F capacitance. Th	of 400 V and then connected in parallel e p.d. across the parallel capacitors is:
Ans	✔ 1. 267 V	
	🗙 2. 260 V	
	🗙 3. 263 V	
	X 4. 262 V	
		Question ID : 5406263646
	1	
Ans	12 V R 500	
Ans	 1. 250 Ω 2. 233 Ω 3. 270 Ω 	Question ID : 5406263642
	 1. 250 Ω 2. 233 Ω 3. 270 Ω 4. 240 Ω Windings of potential transformers are insulated using the second sec	
2.18	 1.250 Ω 2.233 Ω 3.270 Ω 4.240 Ω 	
Q.18	 1. 250 Ω 2. 233 Ω 3. 270 Ω 4. 240 Ω Windings of potential transformers are insulated using the second sec	
Q.18	 ▲ 1. 250 Ω ▲ 2. 233 Ω ▲ 3. 270 Ω ▲ 4. 240 Ω Windings of potential transformers are insulated using 1. paint	
Q.18	 1. 250 Ω 2. 233 Ω 3. 270 Ω 4. 240 Ω Windings of potential transformers are insulated using 1. paint 2. paper	
Ans Q.18 Ans	 1. 250 Ω 2. 233 Ω 3. 270 Ω 4. 240 Ω Windings of potential transformers are insulated using 1. paint 2. paper 3. coir 	

Downloaded from - www.exammix.com

Question ID : 5406263667

Q.3	Three resistors are connected in series across a 12-V battery of 1 Ω , second has a voltage drop of 4 V and the third has a povalue of the circuit current is:	ower dissipation of 12 W. The
Ans	✔ 1. both 2 A and 6 A	
	🗙 2. 6 A	
	🗙 3. 12 A	
	🗙 4. 2 A	
		Question ID : 5406263665
Q.4	A 60 W light bulb has a current of 0.5 A flowing through it. Th through a cross-section of the filament is:	e number of electrons passing
Ans	\times 1. 3.6 × 10 ¹⁸ electrons/s	
	\times 2. 3.1 × 10 ¹² electrons/s	
	\times 3. 3.1 × 10 ¹⁶ electrons/s	
	\checkmark 4. 3.1 × 10 ¹⁸ electrons/s	
	• 4. 3.1 × 10 ⁻² electrons/s	
		Question ID : 5406263656
	conventional welder that draws 20 kVA at 0.8 pf for 0.0625 set then the voltage to which it is charged is: 1.500 V	heat to a single weld as a econd/weld. If C =2000 μF,
Ans	then the voltage to which it is charged is: 1.500 V 2.1000 V 3.800 V	
	then the voltage to which it is charged is: 1. 500 V 2. 1000 V	
Ans	then the voltage to which it is charged is: 1.500 V 2.1000 V 3.800 V 4.1200 V A liquid resistor consists of two concentric metal cylinders of 20 cm respectively with water of specific resistance ρ = 8000	econd/weld. If C =2000 μF, Question ID : 5406263669 f diameters D = 35 cm and d = 0 Ω cm between them. The
Ans Q.6	then the voltage to which it is charged is: 1.500 V 2.1000 V 3.800 V 4.1200 V A liquid resistor consists of two concentric metal cylinders of	econd/weld. If C =2000 μF, Question ID : 5406263669 f diameters D = 35 cm and d = 0 Ω cm between them. The
Ans Q.6	then the voltage to which it is charged is: 1.500 V 2.1000 V 3.800 V 4.1200 V A liquid resistor consists of two concentric metal cylinders of 20 cm respectively with water of specific resistance ρ = 8000 length of both cylinders is 60 cm. The resistance of the liquid	Question ID : 5406263669 f diameters D = 35 cm and d = 0 Ω cm between them. The
Ans	then the voltage to which it is charged is: 1.500 V 2.1000 V 3.800 V 4.1200 V A liquid resistor consists of two concentric metal cylinders of 20 cm respectively with water of specific resistance ρ = 8000 length of both cylinders is 60 cm. The resistance of the liquid 1.118.5 Ω	Question ID : 5406263669 f diameters D = 35 cm and d = 0 Ω cm between them. The
Ans Q.6	then the voltage to which it is charged is: 1.500 V 2.1000 V 3.800 V 4.1200 V A liquid resistor consists of two concentric metal cylinders of 20 cm respectively with water of specific resistance ρ = 8000 length of both cylinders is 60 cm. The resistance of the liquid 1.118.5 Ω 2.11.85 kΩ	econd/weld. If C =2000 μF, Question ID : 5406263669 f diameters D = 35 cm and d = 0 Ω cm between them. The
Ans Q.6	then the voltage to which it is charged is: 1.500 V 2.1000 V 3.800 V 4.1200 V A liquid resistor consists of two concentric metal cylinders of 20 cm respectively with water of specific resistance ρ = 8000 length of both cylinders is 60 cm. The resistance of the liquid 1.118.5 Ω 2.11.85 kΩ 3.11.85 Ω	Question ID : 5406263669 f diameters D = 35 cm and d = Ω cm between them. The I resistor is:
Ans Q.6	then the voltage to which it is charged is: 1.500 V 2.1000 V 3.800 V 4.1200 V A liquid resistor consists of two concentric metal cylinders of 20 cm respectively with water of specific resistance ρ = 8000 length of both cylinders is 60 cm. The resistance of the liquid 1.118.5 Ω 2.11.85 kΩ 3.11.85 Ω	Question ID : 5406263669 f diameters D = 35 cm and d = 0 Ω cm between them. The
Ans Q.6 Ans	then the voltage to which it is charged is: 1.500 V 2.1000 V 3.800 V 4.1200 V A liquid resistor consists of two concentric metal cylinders of 20 cm respectively with water of specific resistance ρ = 8000 length of both cylinders is 60 cm. The resistance of the liquid 1.118.5 Ω 2.11.85 kΩ 3.11.85 Ω	Question ID : 5406263669
Ans Q.6 Ans	then the voltage to which it is charged is: 1.500 V 2.1000 V 3.800 V 4.1200 V A liquid resistor consists of two concentric metal cylinders of 20 cm respectively with water of specific resistance ρ = 8000 length of both cylinders is 60 cm. The resistance of the liquid 1.118.5 Ω 2.11.85 kΩ 3.11.85 Ω 4.12 Ω	Question ID : 5406263669
Ans Q.6 Ans	then the voltage to which it is charged is: 1.500 V 2.1000 V 3.800 V 4.1200 V A liquid resistor consists of two concentric metal cylinders of 20 cm respectively with water of specific resistance $\rho = 8000$ length of both cylinders is 60 cm. The resistance of the liquid 1.118.5 Ω 2.11.85 k Ω 3.11.85 Ω 4.12 Ω What is the maximum safe current flow in a 47 Ω , 2 W resiston	Question ID : 5406263669
Ans Q.6 Ans	then the voltage to which it is charged is: 1.500 V 2.1000 V 3.800 V 4.1200 V A liquid resistor consists of two concentric metal cylinders of 20 cm respectively with water of specific resistance $\rho = 8000$ length of both cylinders is 60 cm. The resistance of the liquid 1.118.5 Ω 2.11.85 kΩ 3.11.85 Ω 4.12 Ω What is the maximum safe current flow in a 47 Ω, 2 W resiston 1.0.21A 2.0.4A	Question ID : 5406263669
Ans Q.6 Ans	then the voltage to which it is charged is: 1.500 V 2.1000 V 3.800 V 4.1200 V A liquid resistor consists of two concentric metal cylinders of 20 cm respectively with water of specific resistance $\rho = 8000$ length of both cylinders is 60 cm. The resistance of the liquid 1.118.5 Ω 2.11.85 kΩ 3.11.85 Ω 4.12 Ω What is the maximum safe current flow in a 47 Ω, 2 W resiston 1.0.21A	Question ID : 5406263669
Ans Q.6 Ans	 then the voltage to which it is charged is: 1. 500 V 2. 1000 V 3. 800 V 4. 1200 V 4. 1200 V A liquid resistor consists of two concentric metal cylinders of 20 cm respectively with water of specific resistance ρ = 8000 length of both cylinders is 60 cm. The resistance of the liquid 1. 118.5 Ω 2. 11.85 kΩ 3. 11.85 Ω 4. 12 Ω What is the maximum safe current flow in a 47 Ω, 2 W resiston 1. 0.21A 2. 0.4A 3. 0.3A 	Question ID : 5406263669

Downloaded from - www.exammix.com

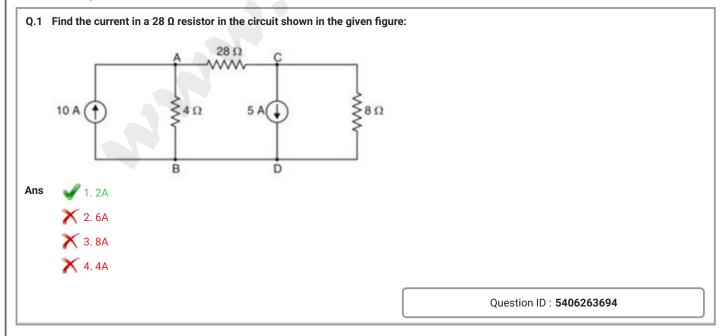
 = 20 Ω, BC = 5 Ω, CD = 4 Ω and DA = 10 Ω. A galvanometer of resistance is connected by the positive. The magnitude of the galvanometer current is: 1. 0.8 A 2. 2.4 A 3. 0.667 A 4. 1 A 	istance 6 Ω is connected acted between A and C Question ID : 5406263664
 2. 2.4 A 3. 0.667 A 4. 1 A a unit of magneto motive force is: 1. A/m 2. AT 3. AT/wb 	Question ID : 5406263664
3. 0.667 A 4. 1 A e unit of magneto motive force is: 1. A/m 2. AT 3. AT/wb	Question ID : 5406263664
3. 0.667 A 4. 1 A e unit of magneto motive force is: 1. A/m 2. AT 3. AT/wb	Question ID : 5406263664
 4. 1 A e unit of magneto motive force is: 1. A/m 2. AT 3. AT/wb 	Question ID : 5406263664
e unit of magneto motive force is: 1. A/m 2. AT 3. AT/wb	Question ID : 5406263664
 1. A/m 2. AT 3. AT/wb 	Question ID : 5406263664
 1. A/m 2. AT 3. AT/wb 	
 ✓ 2. AT ✓ 3. AT/wb 	
X 3. AT/wb	
🗙 4. AT/m	
	Question ID : 5406263652
apacitor of 1 μ F and resistance 82 k Ω are connected in series wit	th an emf of 100 V. The
gnitude of energy stored is:	
-	
🗙 4. 25 J	
	Question ID : 5406263651
0 Ω resistor is in parallel with a 100 ohm resistor. The current in t What is the value of the third resistance to be added in parallel to 1 A?	
1. 277 Ω	
-	
. (4. 000 M	
	Question ID : 5406263663
	 1. 0.25 J 2. 0.025 J 3. 0.0025 J 4. 25 J 9.0 resistor is in parallel with a 100 ohm resistor. The current in that is the value of the third resistance to be added in parallel to A?

Downloaded from - www.exammix.com

Ans	A 300 V energy source delivers 500 mA for 1 hour. The amount 1. 540 m J	n or energy represented is.
AIIS		
	X 2. 54 k J	
	✔ 3. 540 k J	
	🗙 4. 540 J	
		Question ID : 5406263658
Q.14	The maximum voltage that can be applied across a 100 Ω , 10 within the resistor's power rating is:	W resistor in order to keep
Ans	✔ 1. 31.6 V	
	🗙 2. 15 V	
	🗙 3. 35 V	
	🗙 4. 20 V	
		Question ID : 5406263661
Q.15	An electric kettle needs six minutes to boil 2 kg of water from 20°C. The cost of electrical energy required for this operation paise per kWh. The kW-rating is:	the initial temperature of is 12 paise. The rate being 40
Ans	1.5 kW	
	🗙 2. 4 kW	
	🗸 3. 3 kW	
	🗙 4. 8 kW	
		Question ID : 5406263666
Q.16	An aircraft has a wing span of 56 m. It is flying horizontally at a speed of 810 earth's magnetic field is 4×10^{-4} Wb/m ² . The potential difference betwee	0 km/h and the vertical component of en the wing tips of the aircraft is:
Ans	X 1.6V	
	X 2.4V	
	🗙 3. 8 V	
	4.5V	
		Question ID : 5406263653
Q.17	A current of 10 A flows through a resistor for 10 minutes and t resistor is 100 watts. The p.d. across the resistor is:	the power dissipated by the
Ans	X 1.15 V	
	✓ 2. 10 V	
	-	
	X 3.8 V X 4.12 V	
	🗙 3. 8 V	Question ID : 5406263659

	The amount of work done by an electric energy source with a potential that delivers a current of 1 A for 1 minute is:	difference of 3 KV
Ans	🗙 1. 180 J	
	🗙 2. 150 J	
	🗙 3. 150 kJ	
	✓ 4. 180 kJ	
	•	
		Question ID : 5406263657
Q.19	A solenoid 70 cm in length and of 2100 turns has a radius of 4.5 cm. A turns is wound upon the middle part of the solenoid. The mutual induct two coils is:	
Ans	1.20 mH	
	✓ 2. 18 mH	
	X 3. 14 mH	
	X 4. 16 mH	
		Question ID : 5406263655
	 ★ 2.8 H ★ 3.4 H 	
	🗙 3.4 Н	Question ID : 5406263654
	🗙 3.4 Н	Question ID : 5406263654
	🗙 3.4 Н	Question ID : 5406263654
ectic	🗙 3.4 Н	Question ID : 5406263654
Q.1	 ★ 3.4H ★ 4.10 H on : Discipline6 A device which taps electrical energy from the electric power system is	
Q.1	 X 3. 4 H ✓ 4. 10 H on : Discipline6 A device which taps electrical energy from the electric power system is ✓ 1. supply	
Q.1	 x 3. 4 H √ 4. 10 H on : Discipline6 A device which taps electrical energy from the electric power system is x 1. supply x 2. Source	
Q.1	 3. 4 H 4. 10 H on : Discipline6 A device which taps electrical energy from the electric power system is 1. supply 2. Source 3. Load 	
Q.1	 x 3. 4 H √ 4. 10 H on : Discipline6 A device which taps electrical energy from the electric power system is x 1. supply x 2. Source	
Q.1	 3. 4 H 4. 10 H on : Discipline6 A device which taps electrical energy from the electric power system is 1. supply 2. Source 3. Load 	s called
Q.1	 3. 4 H 4. 10 H on : Discipline6 A device which taps electrical energy from the electric power system is 1. supply 2. Source 3. Load 	
Q.1 Ans	 3. 4 H 4. 10 H on : Discipline6 A device which taps electrical energy from the electric power system is 1. supply 2. Source 3. Load 	s called Question ID : 5406263676
Q.1 Ans	 X 3. 4 H ✓ 4. 10 H on : Discipline6 A device which taps electrical energy from the electric power system is ✓ 1. supply ✓ 2. Source ✓ 3. Load ✓ 4. Signal A generating station has a connected load of 43 MW and a maximum descent for the second se	s called Question ID : 5406263676
Q.1 Ans	 X 3. 4 H ✓ 4. 10 H A device which taps electrical energy from the electric power system is X 1. supply X 2. Source ✓ 3. Load ✓ 4. Signal 	s called Question ID : 5406263676
Q.1 Ans	 X 3. 4 H A 10 H A device which taps electrical energy from the electric power system is X 1. supply X 2. Source 3. Load X 4. Signal A generating station has a connected load of 43 MW and a maximum dunits generated being 61.5 × 10 ⁶ per annum. Its demand factor is: 1. 0.465 	s called Question ID : 5406263676
Q.1 Ans	 X 3. 4H A. 10 H A device which taps electrical energy from the electric power system is X 1. supply X 2. Source 3. Load X 4. Signal A generating station has a connected load of 43 MW and a maximum d units generated being 61.5 × 10 ⁶ per annum. Its demand factor is: 1. 0.465 X 2. 460 	s called Question ID : 5406263676
Q.1 Ans	 X 3. 4H A. 10 H A device which taps electrical energy from the electric power system is X 1. supply X 2. Source 3. Load X 4. Signal A generating station has a connected load of 43 MW and a maximum dunits generated being 61.5 × 10 ⁶ per annum. Its demand factor is: 1. 0.465 X 2. 460 X 3. 0.265 	s called Question ID : 5406263676

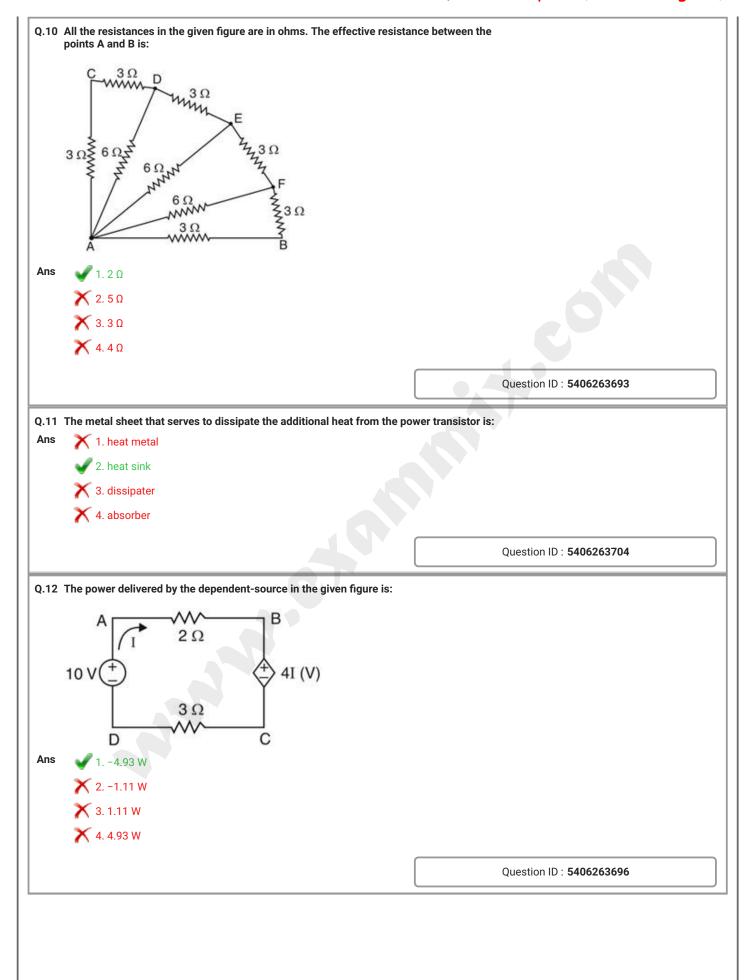
Downloaded from - www.exammix.com


Q.3	A transformer costing Rs. 90,000 has a useful life of 20 year charge using straight line method is (Assume the s be Rs. 10,000.)	rrs. The annual depreciation alvage value of the equipment to
Ans	🗙 1. Rs. 2,000/-	
	🗙 2. Rs. 8,000/-	
	🗙 3. Rs. 6,000/-	
	✔ 4. Rs. 4,000/-	
		Question ID : 5406263683
Q.4	The maximum demand on a power station is 100 MW. If the percent, then the total energy generated in a year is:	e annual load factor is 40
Ans	× 1. 3504 × 10 ⁶ kWh	
	\checkmark 2. 3504 × 10 ⁵ kWh	
	\times 3. 3500 × 10 ⁵ kWh	
	\times 4. 3504 × 10 ⁸ kWh	
		Question ID : 5406263677
Q.5	An electromagnet of resistance 12.4 Ω requires a current of voltage is:	f 1.5 A to operate it. The required
Ans	× 1.20 V	
	X 2. 16.7 V	
	🗙 3. 17 V	
	✔ 4. 18.6 V	
		Question ID : 5406263689
Q.6	A searchlight takes 100 A at 80 V. It is to be operated from the resistor to be connected in series.	a 220 V supply. Find the value of
Ans	χ 1.14k Ω	
	2. 1.4 kΩ	
	Χ 3. 14 Ω	
	4. 1.4 Ω	
		Question ID : 5406263690
Q.7	The unvarying load which occurs almost the whole day on t	he station is known as:
Ans	🗙 1. peak load	
	X 2. top load	
	X 3. bottom load	
	✔ 4. base load	
		Question ID : 5406263681

Ans		tis:
	🗙 1. 375 kW	
	✓ 2. 3750 kW	
	🗙 3. 350 kW	
	🗙 4. 3450 kW	
		Question ID : 5406263679
		Question ID . 3400203079
	A force of 0.032 N is required to move a charge of 42 μ C in an electric fipoints 25 cm apart. The potential difference that exists between the two	
Ans	🗙 1. 1.9 V	
	🗙 2. 19 V	
	🗙 3. 119 V	
	✔ 4. 190 V	
	•	
		Question ID : 5406263672
	A 3-phase line has conductors 2 cm in diameter spaced equilaterally 1 r dielectric strength of air is 30 kV (max) per cm, then the disruptive critic line is (Take air density factor δ = 0.952 and irregularity factor 1.160 kV 2.140 kV	al voltage for the
l	dielectric strength of air is 30 kV (max) per cm, then the disruptive critic line is (Take air density factor δ = 0.952 and irregularity factor	al voltage for the
l	dielectric strength of air is 30 kV (max) per cm, then the disruptive critic line is (Take air density factor δ = 0.952 and irregularity factor 1.160 kV 2.140 kV 3.150 kV	al voltage for the
Q.11	dielectric strength of air is 30 kV (max) per cm, then the disruptive critic line is (Take air density factor δ = 0.952 and irregularity factor 1.160 kV 2.140 kV 3.150 kV	al voltage for the m _o = 0.9.) Question ID : 5406263687
Q.11	dielectric strength of air is 30 kV (max) per cm, then the disruptive critic line is (Take air density factor δ = 0.952 and irregularity factor 1.160 kV 2.140 kV 3.150 kV 4.145 kV The percentage saving in copper feeder if the line voltage in a 2-wire DC from 220 V to 500 V for the same power transmitted over the same dista	al voltage for the m _o = 0.9.) Question ID : 5406263687
Ans Q.11	dielectric strength of air is 30 kV (max) per cm, then the disruptive critic line is (Take air density factor δ = 0.952 and irregularity factor 1. 160 kV 2. 140 kV 3. 150 kV 4. 145 kV The percentage saving in copper feeder if the line voltage in a 2-wire DC from 220 V to 500 V for the same power transmitted over the same dista same power loss is:	al voltage for the m _o = 0.9.) Question ID : 5406263687
Ans Q.11	dielectric strength of air is 30 kV (max) per cm, then the disruptive critic line is (Take air density factor δ = 0.952 and irregularity factor 1. 160 kV 2. 140 kV 3. 150 kV 4. 145 kV The percentage saving in copper feeder if the line voltage in a 2-wire DC from 220 V to 500 V for the same power transmitted over the same dista same power loss is: 1. 78.64 percent	al voltage for the m _o = 0.9.) Question ID : 5406263687
Ans Q.11	dielectric strength of air is 30 kV (max) per cm, then the disruptive critic line is (Take air density factor δ = 0.952 and irregularity factor 1. 160 kV 2. 140 kV 3. 150 kV 4. 145 kV The percentage saving in copper feeder if the line voltage in a 2-wire DC from 220 V to 500 V for the same power transmitted over the same dista same power loss is: 1. 78.64 percent 2. 84.64 percent	al voltage for the m _o = 0.9.) Question ID : 5406263687
Ans Q.11	dielectric strength of air is 30 kV (max) per cm, then the disruptive critic line is (Take air density factor δ = 0.952 and irregularity factor 1. 160 kV 2. 140 kV 3. 150 kV 4. 145 kV The percentage saving in copper feeder if the line voltage in a 2-wire DC from 220 V to 500 V for the same power transmitted over the same dista same power loss is: 1. 78.64 percent 2. 84.64 percent 3. 85.64 percent	al voltage for the m _o = 0.9.) Question ID : 5406263687

	A 100 MW power stations delivers 100 MW for 2 hours, 50 MW for 8 h for the rest of each day. It is also shut down for maintenance for 60 da annual load factor is:	
Ans	X 1. 40 percent	
	✔ 2. 21 percent	
	🗙 3. 15 percent	
	X 4. 50 percent	
		Question ID : 5406263680
Q.14	The cosine of the angle between voltage and current in an AC circuit i	s known as:
Ans	🗙 1. diversity factor	
	✔ 2. power factor	
	X 3. load factor	
	X 4. power	
		Question ID : 5406263685
	X 1. 14 paise X 2. 15 paise	
	• · · ·	
	 2. 15 paise 3. 12.85 paise 	Question ID : 5406263684
	 2. 15 paise 3. 12.85 paise 4. 13.85 paise A 100 MW steam station uses coal of calorific value 6400 kcal/kg. Th station is 30 percent and electrical efficiency is 92 percent. The coal of when the station is delivering its full rated output is:	ermal efficiency of the
	 2. 15 paise 3. 12.85 paise 4. 13.85 paise A 100 MW steam station uses coal of calorific value 6400 kcal/kg. Th station is 30 percent and electrical efficiency is 92 percent. The coal of when the station is delivering its full rated output is: 1. 4868 kg	ermal efficiency of the
_	 2. 15 paise 3. 12.85 paise 4. 13.85 paise A 100 MW steam station uses coal of calorific value 6400 kcal/kg. Th station is 30 percent and electrical efficiency is 92 percent. The coal of when the station is delivering its full rated output is: 1. 4868 kg 2. 48,687 kg 	ermal efficiency of the
	 2. 15 paise 3. 12.85 paise 4. 13.85 paise 4. 13.85 paise A 100 MW steam station uses coal of calorific value 6400 kcal/kg. Th station is 30 percent and electrical efficiency is 92 percent. The coal of when the station is delivering its full rated output is: 1. 4868 kg 2. 48,687 kg 3. 49,000 kg 	ermal efficiency of the
Q.16 Ans	 2. 15 paise 3. 12.85 paise 4. 13.85 paise A 100 MW steam station uses coal of calorific value 6400 kcal/kg. Th station is 30 percent and electrical efficiency is 92 percent. The coal of when the station is delivering its full rated output is: 1. 4868 kg 2. 48,687 kg 	ermal efficiency of the
_	 2. 15 paise 3. 12.85 paise 4. 13.85 paise 4. 13.85 paise A 100 MW steam station uses coal of calorific value 6400 kcal/kg. Th station is 30 percent and electrical efficiency is 92 percent. The coal of when the station is delivering its full rated output is: 1. 4868 kg 2. 48,687 kg 3. 49,000 kg 	ermal efficiency of the consumption per hour
	 2. 15 paise 3. 12.85 paise 4. 13.85 paise 4. 13.85 paise A 100 MW steam station uses coal of calorific value 6400 kcal/kg. Th station is 30 percent and electrical efficiency is 92 percent. The coal of when the station is delivering its full rated output is: 1. 4868 kg 2. 48,687 kg 3. 49,000 kg 	ermal efficiency of the
Ans	 2. 15 paise 3. 12.85 paise 4. 13.85 paise 4. 13.85 paise A 100 MW steam station uses coal of calorific value 6400 kcal/kg. Th station is 30 percent and electrical efficiency is 92 percent. The coal of when the station is delivering its full rated output is: 1. 4868 kg 2. 48,687 kg 3. 49,000 kg 4. 486 kg Twenty-seven spherical drops, each of radius 3 mm and carrying 10 ⁻¹	ermal efficiency of the consumption per hour Question ID : 5406263674
Ans	 2. 15 paise 3. 12.85 paise 4. 13.85 paise 4. 13.85 paise A 100 MW steam station uses coal of calorific value 6400 kcal/kg. Th station is 30 percent and electrical efficiency is 92 percent. The coal of when the station is delivering its full rated output is: 1. 4868 kg 2. 48,687 kg 3. 49,000 kg 4. 486 kg Twenty-seven spherical drops, each of radius 3 mm and carrying 10 ⁻⁷ combined to form a single drop. The capacitance of the bigger drop is	ermal efficiency of the consumption per hour Question ID : 5406263674
Ans	 × 2. 15 paise ✓ 3. 12.85 paise ★ 4. 13.85 paise ★ 4. 13.85 paise A 100 MW steam station uses coal of calorific value 6400 kcal/kg. Th station is 30 percent and electrical efficiency is 92 percent. The coal of when the station is delivering its full rated output is: ▲ 1. 4868 kg ▲ 2. 48,687 kg ▲ 3. 49,000 kg ▲ 4. 486 kg ▲ 4. 486 kg ▲ 1. 1µF 	ermal efficiency of the consumption per hour Question ID : 5406263674
Ans	 2. 15 paise 3. 12.85 paise 4. 13.85 paise 4. 13.85 paise A 100 MW steam station uses coal of calorific value 6400 kcal/kg. The station is 30 percent and electrical efficiency is 92 percent. The coal of when the station is delivering its full rated output is: 1. 4868 kg 2. 48,687 kg 3. 49,000 kg 4. 486 kg 4. 486 kg 1. 1µF 2. 1pF 	ermal efficiency of the consumption per hour Question ID : 5406263674
Ans	 2. 15 paise 3. 12.85 paise 4. 13.85 paise 4. 13.85 paise A 100 MW steam station uses coal of calorific value 6400 kcal/kg. The station is 30 percent and electrical efficiency is 92 percent. The coal of when the station is delivering its full rated output is: 1. 4868 kg 2. 48,687 kg 3. 49,000 kg 4. 486 kg Twenty-seven spherical drops, each of radius 3 mm and carrying 10 ⁻¹ combined to form a single drop. The capacitance of the bigger drop is 1. 1µF 2. 1pF 3. 1F 	ermal efficiency of the consumption per hour Question ID : 5406263674
Ans	 2. 15 paise 3. 12.85 paise 4. 13.85 paise 4. 13.85 paise A 100 MW steam station uses coal of calorific value 6400 kcal/kg. The station is 30 percent and electrical efficiency is 92 percent. The coal of when the station is delivering its full rated output is: 1. 4868 kg 2. 48,687 kg 3. 49,000 kg 4. 486 kg 4. 486 kg 1. 1µF 2. 1pF 	ermal efficiency of the consumption per hour Question ID : 5406263674

Q.18	A resistance R and a 4 μ F capacitor are connected Across the capacitor is a neon lamp that strikes (g the lamp strike (glow) 5 seconds after it is switched	lows) at 120 V. The value of R to make
Ans	🗙 1. 136 ΜΩ	
	🗙 2. 1.36 Ω	
	🗙 3. 1.36 kΩ	
	👽 4. 1.36 ΜΩ	
		Question ID : 5406263671
).19 Ans	When the load elements of a load curve are arrang magnitudes, the curve thus obtained is called as	ed in the order of descending
		Question ID : 5406263675
2.20	The value of diversity factor in an interconnected g	grid system:
Ans	X 1. remains constant	
	2. increases	
	X 3. decreases	
	•	


Section : Discipline7

Downloaded from - www.exammix.com

	oad line are:	_c = 10 V and drives a load	of 10 Ω . The end p	oint values of the
Ans 🏋	🔨 1. 50 mA and 5 V			
~	🔨 2. 500 A and 5 V			
~	🔨 3. 5 mA and 5 V			
	🖊 4. 500 mA and 5 V			
				Question ID : 5406263707
Q.3 The	value of v in the circuit	shown in the given figure	is:	
	A V 1. 15 V 2. 12 V 3. 10 V	A 6 Ω 2i ₁	\$2Ω	
	✓ 4. 20 V wer transistor working	in class A operation has z	ero signal power d	Question ID : 5406263695
the A	AC output power is 4 W	, then its collector efficien	cy is:	
	1. 30 Percent			
Į,	2. 40 Percent			
×	2. 40 Percent			
×	2. 40 Percent			
×	2. 40 Percent			Question ID : 5406263702
Q.5 For a load	2. 40 Percent 3. 60 Percent 4. 45 Percent	ng a supply of V _{cc} = 12 V ar	nd driving a load of	

	The unstable condition where the collector current rises and continue	es to increase is:
Ans	✔ 1. thermal runway	
	X 2. heat sink	
	🗙 3. heat runaway	
	X 4. thermal increase	
		Question ID : 5406263703
Q.7	The AC base voltage change of 1 mV produces an AC emitter current emitter diode has an AC resistance of:	change of 50 μA. The
Ans	🖌 1. 20 Ω	
	🗙 2. 100 Ω	
	🗙 3. 50 Ω	
	🗙 4. 30 Ω	
		0
		Question ID : 5406263700
Q.8	A power transistor dissipates 4W. If Tj(max) = 90° C, then the maximum temperature at which it operates is (Given $\theta = 10^{\circ} \text{ c/w.}$)	um ambient
Ans	✔ 1. 50° C	
	🗙 2. 60° C	
	🗙 3. 100° C	
	X 4. 80° C	
		Question ID : 5406263705
Q.9	A photo diode is exposed to light with an illumination of 2.5 mW/cm ² the photo diode for the given conditions is 37.4μ A/mW/cm ² , then the through the device is:	If the sensitivity of e reverse current
Ans	Χ 1. 9.35 μΑ	
	🗙 2. 93.5 A	
	🗙 3. 935 µА	
	4. 93.5 μA	
		Question ID : 5406263697

	A 100 watt, 250 V lamp is connected in parallel with an V supply. The total power dissipated in the circuit is 11 resistance is (Assume the resistance of the later of	amp remains unaltered.)
Ans	🖌 1. 62.5 Ω	
	🗙 2. 65 Ω	
	🗙 3. 60 Ω	
	🗙 4. 70 Ω	
		Question ID : 5406263691
Q.14	In an RC coupled amplifier, the AC voltage across load of 18 V. The maximum possible AC load power is:	RL = 100 $Ω$ has a peak to peak value
Ans	X 1. 405 kW	
	× 2. 40.5 mW	
	✓ 3. 405 mW	
	X 4. 405 W	
	• •	
		Question ID : 5406263701
	★ 1.31★ 2.80	
	_	
Ans	× 2. 80 × 3. 41	Question ID : 5406263708
	 2. 80 3. 41 4. 97 The voltage V _{AB} in the circuit shown in the given figure	e is:
Q.16	2.80 3.41 4.97 The voltage V _{AB} in the circuit shown in the given figure $10 V = 10 \Omega V^{AB} V^{AB}$	e is:
Q.16	2.80 \checkmark 3.41 \checkmark 4.97 The voltage V _{AB} in the circuit shown in the given figure $10 \text{ V} = 10 \Omega \text{ V}^{\text{AB}} \text{ V}^{A$	e is:

Downloaded from - www.exammix.com

	and industrial loads operate is:	
Ans	✔ 1. 50 Hz	
	🗙 2. 40 Hz	
	🗙 3. 60 Hz	
	🗙 4. 100 Hz	
		Question ID : 5406263699
Q.18	Which of the following is NOT a method of control of CRO?	
Ans	1. Current control	
	🗙 2. Intensity control	
	🗙 3. Vertical position control	
	🗙 4. Horizontal position control	
		Question ID : 5406263710
Q.19 Ans	A transistor has Ic(max) = 500 mA and β max = 300, the maxim current for the device is: 1. 16.7 mA	um allowable value of base
	× 2. 167 A	
	✓ 3. 1.67 mA	
	X 4 1 67 A	
	🗙 4. 1.67 A	
	X 4. 1.67 A	Question ID : 5406263698
Q.20 Ans	An SCR has a circuit fusing rating of 50 A ² . The device is being could be subjected to a 100 A surge. The maximum allowable of 1.10 ms 2.10 s 3.5 ms	used in a circuit where it
	An SCR has a circuit fusing rating of 50 A ² . The device is being could be subjected to a 100 A surge. The maximum allowable of 1. 10 ms 2. 10 s	used in a circuit where it duration of such surge is:
	An SCR has a circuit fusing rating of 50 A ² . The device is being could be subjected to a 100 A surge. The maximum allowable of 1.10 ms 2.10 s 3.5 ms	used in a circuit where it
Ans	An SCR has a circuit fusing rating of 50 A ² . The device is being could be subjected to a 100 A surge. The maximum allowable of 1.10 ms 2.10 s 3.5 ms	used in a circuit where it duration of such surge is:
Ans	An SCR has a circuit fusing rating of 50 A ² . The device is being could be subjected to a 100 A surge. The maximum allowable of 1.10 ms 2.10 s 3.5 ms 4.5 s	used in a circuit where it duration of such surge is:
Ans	An SCR has a circuit fusing rating of 50 A ² . The device is being could be subjected to a 100 A surge. The maximum allowable of 1.10 ms 2.10 s 3.5 ms 4.5 s on : Discipline8	used in a circuit where it duration of such surge is:

🗙 4. 0.7 leading

Question ID : 5406263711

Q.2			
	The voltage drop at the cathode of a mercury arc rectifier is usually:		
Ans	X 1. 0.4 to 0.8 V		
	✔ 2. 5 to 6 V		
	🗙 3. 1 to 2 V		
	🗙 4. 8 to 10 V		
			Question ID : 5406263720
Q.3	The suburban train operating voltage in case of direct current system	s:	
Ans	✔ 1. 600 -750 V		
	🗙 2. 15 V		
	🗙 3. 24 V		
	🗙 4. 220 V		
			Question ID : 5406263712
Q.4	For induction furnaces, in case of high frequency power supply	can be used.	
Ans	X 1. multiphase transformer		
	X 2. current transformer		
	X 3. potential transformer		
	X 3. potential transformer		Question ID : 5406263718
0.5	X 3. potential transformer 4. MG set		Question ID : 5406263718
	 3. potential transformer 4. MG set The electrode in a helium arc welding is made of:		Question ID : 5406263718
	 3. potential transformer 4. MG set The electrode in a helium arc welding is made of: 1. silicon steel 		Question ID : 5406263718
	 3. potential transformer 4. MG set The electrode in a helium arc welding is made of: 1. silicon steel 2. lead 		Question ID : 5406263718
	 3. potential transformer 4. MG set The electrode in a helium arc welding is made of: 1. silicon steel 2. lead 3. tungsten 		Question ID : 5406263718
	 3. potential transformer 4. MG set The electrode in a helium arc welding is made of: 1. silicon steel 2. lead 		Question ID : 5406263718
	 3. potential transformer 4. MG set The electrode in a helium arc welding is made of: 1. silicon steel 2. lead 3. tungsten 		Question ID : 5406263718 Question ID : 5406263714
Ans	 3. potential transformer 4. MG set The electrode in a helium arc welding is made of: 1. silicon steel 2. lead 3. tungsten 4. carbon 		
Ans Q.6	 3. potential transformer 4. MG set The electrode in a helium arc welding is made of: 1. silicon steel 2. lead 3. tungsten 4. carbon Which of the following metals is used in the process of galvanisation?		
Ans Q.6	 3. potential transformer 4. MG set The electrode in a helium arc welding is made of: 1. silicon steel 2. lead 3. tungsten 4. carbon Which of the following metals is used in the process of galvanisation? 1. Mica 		
Ans Q.6	 3. potential transformer 4. MG set The electrode in a helium arc welding is made of: 1. silicon steel 2. lead 3. tungsten 4. carbon Which of the following metals is used in the process of galvanisation? 1. Mica 		
Ans Q.6	 3. potential transformer 4. MG set The electrode in a helium arc welding is made of: 1. silicon steel 2. lead 3. tungsten 4. carbon Which of the following metals is used in the process of galvanisation? 1. Mica 2. Zinc 3. Copper 		
Ans Q.6	 3. potential transformer 4. MG set The electrode in a helium arc welding is made of: 1. silicon steel 2. lead 3. tungsten 4. carbon Which of the following metals is used in the process of galvanisation? 1. Mica 		
Ans	 3. potential transformer 4. MG set The electrode in a helium arc welding is made of: 1. silicon steel 2. lead 3. tungsten 4. carbon Which of the following metals is used in the process of galvanisation? 1. Mica 2. Zinc 3. Copper 		

Q.7	In which of the following cities do tram services exist?	
ns	🗙 1. Bangalore	
	🗙 2. Chennai	
	✔ 3. Kolkata	
	X 4. Delhi	
		Question ID : 5406263716
.8	ERW pipes are designed using:	
ns	X 1. gas welding	
	2. electrical resistance welding	
	X 3. induction welding	
	X 4. thermal welding	
		Question ID : 5406263713
.9	Cinema projectors use:	
ns	X 1. mercury lamp	
	X 2. filament lamp	
	 3. carbon arc lamp 	
	4. Incandescent light bulb	
		Question ID : 5406263717
.10	A rectifier is an example of:	
ns	1. non-linear component	
	2. bilateral component	
	X 3. linear component	
	4. passive component	
		Question ID : 5406263719
ctio	n : General English1	
.1	Select the most appropriate option to substitute the underlined segme sentence. If there is no need to substitute it, select 'No substitution re	ent in the given guired
	The strongest silk, however, <u>are made by</u> caterpillars that refuse to be	
ns	\mathbf{X} 1. are made up by	uomesticateu.
	 2. is made by 	
	X 3. are made of	
	X 4. No substitution required	

Downloaded from - www.exammix.com

n ID : 5406263722
n ID : 5406263722
n ID : 5406263722
n ID : 5406263722
n ID : 5406263735
ITID . 3406263735
n ID : 5406263726

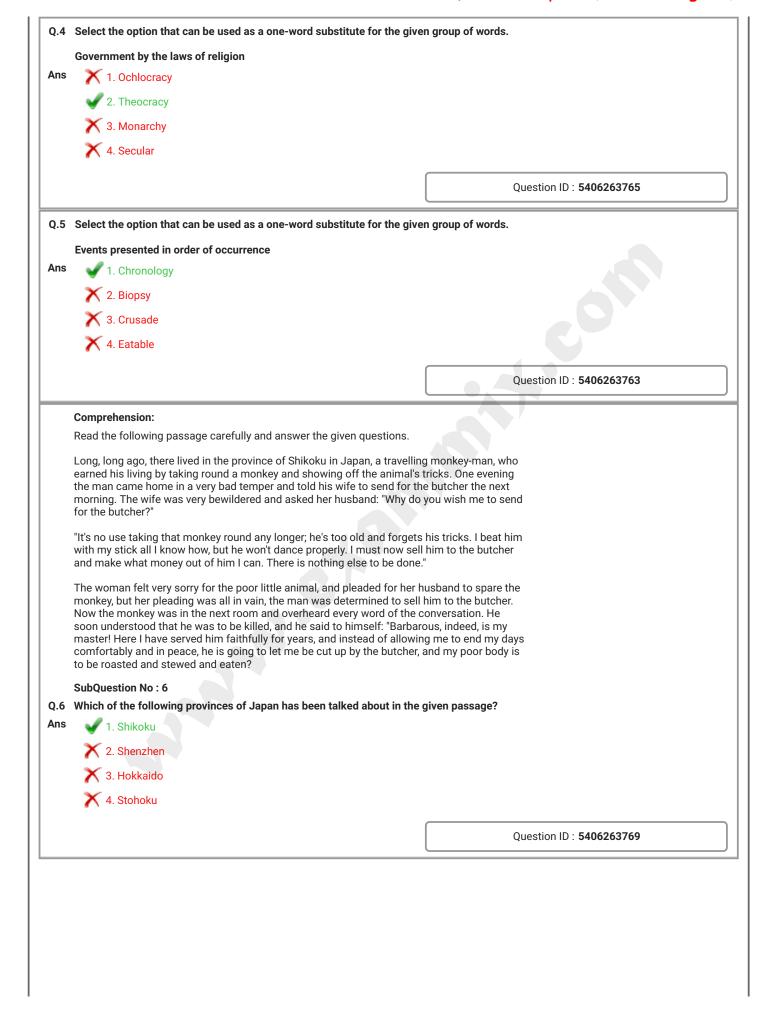
Q.6	In the following question, some parts of the sentence may have error of the sentence has an error and select the appropriate option. If a se error, select No Error.	
	Suddenly, he came and (a)/ took away a few coins (b)/ I was left with error (d)	at the time. (c)/ No
Ans	\mathbf{X} 1. I was left with at the time.	
	\mathbf{X} 2. Suddenly, he came and	
	X 3. No error	
	4. took away a few coins	
		Question ID : 5406263723
Q.7	Select the most appropriate option to substitute the underlined segm sentence. If there is no need to substitute it, select 'No substitution re	
	It is time to forgot past differences and work together for the larger in	terest of the nation.
Ans	🗙 1. Its time forget	
	X 2. Its time to forgot	
	✔ 3. It's time to forget	
	🗙 4. No substitution required	
Q.8	Select the most appropriate option to substitute the underlined segm sentence. If there is no need to substitute it, select 'No substitution re There is plenty of room <u>for growth</u> in Italy, a very fragmented market.	
	sentence. If there is no need to substitute it, select 'No substitution re	ent in the given
	 sentence. If there is no need to substitute it, select 'No substitution re There is plenty of room <u>for growth</u> in Italy, a very fragmented market. 1. to growing 2. for growing 3. to growth 	ent in the given
Q.8 Ans	 sentence. If there is no need to substitute it, select 'No substitution re There is plenty of room <u>for growth</u> in Italy, a very fragmented market. 1. to growing 2. for growing 3. to growth 	ent in the given equired'. Question ID : 5406263731
Ans	 sentence. If there is no need to substitute it, select 'No substitution re There is plenty of room for growth in Italy, a very fragmented market. 1. to growing 2. for growing 3. to growth 4. No substitution required 	ent in the given equired'. Question ID : 5406263731
Ans Q.9	 sentence. If there is no need to substitute it, select 'No substitution re There is plenty of room <u>for growth</u> in Italy, a very fragmented market. 1. to growing 2. for growing 3. to growth 4. No substitution required Parts of a sentence are given below in jumbled order. Arrange the part form a meaningful sentence. 1. They are sophisticated enough P. to know that Free Basics Q. the things they really want to access	ent in the given equired'. Question ID : 5406263731
Ans Q.9	 sentence. If there is no need to substitute it, select 'No substitution re There is plenty of room for growth in Italy, a very fragmented market. 1. to growing 2. for growing 3. to growth 4. No substitution required Parts of a sentence are given below in jumbled order. Arrange the parform a meaningful sentence. 1. They are sophisticated enough P to know that Free Basics Q. the things they really want to access R. would not offer them any of	ent in the given equired'. Question ID : 5406263731
Ans Q.9	 sentence. If there is no need to substitute it, select 'No substitution re There is plenty of room for growth in Italy, a very fragmented market. 1. to growing 2. for growing 3. to growth 4. No substitution required Parts of a sentence are given below in jumbled order. Arrange the part form a meaningful sentence. They are sophisticated enough P to know that Free Basics to know that Free Basics to know that Free Basics the things they really want to access would not offer them any of 1. QPR 2. PRQ 	ent in the given equired'. Question ID : 5406263731
Ans Q.9	 sentence. If there is no need to substitute it, select 'No substitution re There is plenty of room for growth in Italy, a very fragmented market. 1. to growing 2. for growing 3. to growth 4. No substitution required Parts of a sentence are given below in jumbled order. Arrange the parform a meaningful sentence. 1. They are sophisticated enough P. to know that Free Basics Q. the things they really want to access R. would not offer them any of 1. QPR 2. PRQ 3. RPQ 	ent in the given equired'. Question ID : 5406263731
Ans	 sentence. If there is no need to substitute it, select 'No substitution re There is plenty of room for growth in Italy, a very fragmented market. 1. to growing 2. for growing 3. to growth 4. No substitution required Parts of a sentence are given below in jumbled order. Arrange the part form a meaningful sentence. They are sophisticated enough P to know that Free Basics to know that Free Basics to know that Free Basics the things they really want to access would not offer them any of 1. QPR 2. PRQ 	ent in the given equired'. Question ID : 5406263731

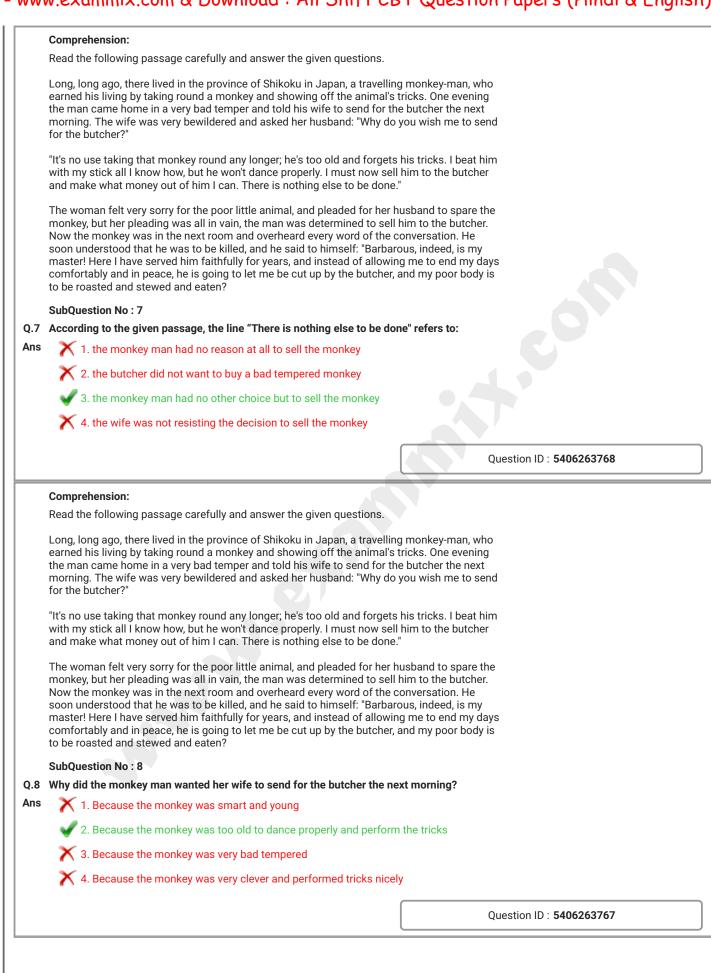
	In the following question, some parts of the sentence may have en of the sentence has an error and select the appropriate option. If a error, select No Error.	
	The debate will be held in (a)/ the run-up to the general election at Parliament. (c)/ No Error (d)	t the (b)/ fag end on the
Ans	\mathbf{X} 1. the run-up to the general election at the	
	X 2. No Error	
	3. fag end on the Parliament.	
	\mathbf{X} 4. The debate will be held in	
		Question ID : 5406263727
Q.11	In the following question, some parts of the sentence may have en of the sentence has an error and select the appropriate option. If a error, select No Error.	
	He has become (a)/ the younger player to be (b)/ nominated for the error (d)	ne regional awards. (c)/ No
Ans	1. the younger player to be	
	X 2. He has become	
	3. nominated for the regional awards.	
	4. No error	
	Out of the given four sentences, choose the one which is gramma 1. She rise to the occasion and won the election	Question ID : 5406263724
	 1. She rise to the occasion and won the election 2. She has rose to the occasion and won the election 3. She rose to the occasion and won the election 	
Ans	 1. She rise to the occasion and won the election 2. She has rose to the occasion and won the election 3. She rose to the occasion and won the election 4. She risen to the occasion and won the election 	Atically correct. Question ID : 5406263725
Ans	 1. She rise to the occasion and won the election 2. She has rose to the occasion and won the election 3. She rose to the occasion and won the election 4. She risen to the occasion and won the election 	Atically correct. Question ID : 5406263725 Atical error.
Ans Q.13	 1. She rise to the occasion and won the election 2. She has rose to the occasion and won the election 3. She rose to the occasion and won the election 4. She risen to the occasion and won the election 	Atically correct. Question ID : 5406263725 Atical error.
Ans Q.13	 1. She rise to the occasion and won the election 2. She has rose to the occasion and won the election 3. She rose to the occasion and won the election 4. She risen to the occasion and won the election 	Atically correct. Question ID : 5406263725 Atical error.
Ans	 1. She rise to the occasion and won the election 2. She has rose to the occasion and won the election 3. She rose to the occasion and won the election 4. She risen to the occasion and won the election Identify the segment in the sentence, which contains the grammar When Della reached home her intoxication given way a little to prove 1. When Della reached home	Atically correct. Question ID : 5406263725 Atical error.
Ans Q.13	 1. She rise to the occasion and won the election 2. She has rose to the occasion and won the election 3. She rose to the occasion and won the election 4. She risen to the occasion and won the election Identify the segment in the sentence, which contains the grammat When Della reached home her intoxication given way a little to prove 1. When Della reached home 2. way a little to 	Atically correct. Question ID : 5406263725 Atical error.
Ans Q.13	 1. She rise to the occasion and won the election 2. She has rose to the occasion and won the election 3. She rose to the occasion and won the election 4. She risen to the occasion and won the election Identify the segment in the sentence, which contains the grammate When Della reached home her intoxication given way a little to prove 1. When Della reached home 2. way a little to 3. her intoxication given 	Atically correct. Question ID : 5406263725 Atical error.

Q.14	Select the most appropriate option to substitute the underlined segment sentence. If there is no need to substitute it, select 'No substitution requ	
	As a young girl grow up in Trichy, Vinita says she became interested in a	nimation.
Ans	🗙 1. grew up	
	🗙 2. grow	
	🗙 3. No substitution required	
	🗸 4. growing up	
		Question ID : 5406263732
Q.15	In the following question, some parts of the sentence may have errors. F of the sentence has an error and select the appropriate option. If a sente error, select No Error.	
	The more money she earns, (a)/ the more clothes (b)/ she buys! (c)/ No	Error (d)
Ans	🗙 1. The more money she earns,	
	🗙 2. she buys!	
	🗹 3. No Error	
	🗙 4. the more clothes	
		Question ID : 5406263721
	 2. banking on 3. doing without 4. drawing up 	
		Question ID : 5406263737
Q.17 Ans	 Fill in the blank with the most appropriate word. She emphasised on giving regard to the of elders. 1. advice 2. advise 3. advising 4. advicing 	Question ID : 5406263739

	Identify the segment in the sentence, which contains the grammatical	
	The mother placed its child near the porch as usual while she tidied up her breakfast ready.	the house and got
Ans	🗙 1. and got her breakfast ready.	
	imes 2. the porch as usual while	
	✔ 3. The mother placed its child near	
	imes 4. she tidied up the house	
		Question ID : 5406263729
2.19	Fill in the blank with the most appropriate word.	
	The Aprilia team spent two years in designing and developing the SXR andespecially for the Indian market.	moto-scooter in Italy
Ans	andespecially for the Indian market.	
	X 2. has been made	
	 ✓ 3. it has been made 	
	•	
	X 4. it made	
		Question ID : 5406263738
2.20	Fill in the blanks with the most appropriate words.	
	Shafeeq is as he not been able to pay the installments.	
Ans	1. worried; has	
	X 2. anxious; have	
	🗙 3. upset; always	
	🗙 4. happy; will	
		Question ID : 5406263736
octio	n : General English2	
	Select the meaning of the given phrase.	
	Let down	
Ans	1. Betray somebody	
	X 2. Dislike somebody	
	 3. Disappoint somebody 	
	X 4. Demote somebody	
		Question ID : 5406263758

	Sentences of a paragraph are given below in jumbled order. Are right order to form a meaningful and coherent paragraph.	range the sentences in the
	P. the man had a beautiful wife, whom he loved passionately, a	nd never left her side if
	possible Q. one day, when he was obliged by important business to go a place where all kinds of birds are sold and bought a parrot R. this parrot not only spoke well, but it had the gift of telling al S. he brought it home in a cage and asked his wife to put it in h	way from her, he went to a II that had been done before it
Ans	of it while he was away	
AIIS	X 1. SRQP	
	X 2. RQPS	
	X 3. QSRP	
	🖌 4. PQRS	
		Question ID : 5406263743
Q.3	Select the INCORRECTLY spelt word.	
Ans	X 1. Excellence	
	🗙 2. Canoe	
	✔ 3. Camraderie	
	🗙 4. Hiatus	
		Question ID : 5406263752
Q.4 Ans	Select the correctly spelt word.	
AIIS	1. Narcissists	
	2. Narcissits	
	X 3. Narcisists	
	X 4. Narccisist	
		Question ID : 5406263750
Q.5	In the following question, out of the four alternatives, select the	e alternative which is the
	most appropriate substitute of the given phrase.	
	A group of singers in a church	
Ans	A group of singers in a church X 1. band	
Ans	A group of singers in a church X 1. band	
Ans	A group of singers in a church X 1. band	
Ans	A group of singers in a church X 1. band	
Ans	A group of singers in a church	Question ID : 5406263760


Q.6	Select the correctly spelt word.	
Ans	1. Bibilography	
	2. Bibliography	
	X 3. Bibiloigraphy	
	🗙 4. Biblography	
		Question ID : 5406263748
Q.7	Select the most appropriate ANTONYM of the given word.	
	CONFOUND	
Ans	X 1. Confuse	
	X 2. Baffle	
	X 3. Perplex	
	✔ 4. Distinguish	
		Question ID : 5406263747
Q.8	Select the most appropriate meaning of the given idiom.	
	To take the bull by the horns	
Ans	🗙 1. To enjoy risky sports	
	2. To face danger boldly	
	X 3. To escape unhurt	
	X 4. To act foolishly	
		Question ID : 5406263755
Ans	1. Chimera	
	X 2. Chimiera	
	3. Chemera	
	X 4. Chemira	
		Question ID : 5406263749
Q.10	Select the most appropriate synonym of the given word.	
	LEXICON	
Ans	1. Live conference	
	2. Dictionary	
	X 3. Contract	
	🗙 4. Number	
		Question ID : 5406263744


	Select the meaning of the given phrase.	
	Disposed of	
Ans	V 1. Sold off	
	🗙 2. Purchased	
	🗙 3. Got repaired	
	🗙 4. Got renewed	
		Question ID : 5406263759
Q.12	Select the most appropriate meaning of the given idiom.	
	Lock, stock and barrel	
Ans	🗙 1. Immediately	
	🗙 2. Partly	
	✔ 3. Completely	
	🗙 4. Rarely	
		Question ID : 5406263754
		Question 10 . 5406265754
Q.13	Select the most appropriate synonym of the given word.	
	ERUDITE	
Ans	X 1. Isolated	
Ans	 1. Isolated 2. Untrained 	
Ans		
Ans	X 2. Untrained	
Ans	 2. Untrained 3. Ignorant 	
Q.14	 2. Untrained 3. Ignorant 4. Knowledgeable Parts of a sentence are given below in jumbled order. Arrange the parts	Question ID : 5406263745
Q.14	 2. Untrained 3. Ignorant 4. Knowledgeable Parts of a sentence are given below in jumbled order. Arrange the parts form a meaningful sentence. 1. I tried helping P. thinking realized it was a lot but on deeper Better to stay away 1. QPR 2. RPQ 	
Q.14	 2. Untrained 3. Ignorant 4. Knowledgeable Parts of a sentence are given below in jumbled order. Arrange the parts form a meaningful sentence. 1. I tried helping P. thinking realized it was a lot but on deeper Better to stay away 1. QPR 2. RPQ 	
Q.14	 2. Untrained 3. Ignorant 4. Knowledgeable Parts of a sentence are given below in jumbled order. Arrange the parts form a meaningful sentence. 1. I tried helping P. thinking realized it was a lot but on deeper better to stay away 1. QPR 	

Q.15	Choose the correct meaning of the given phrase/idiom from the given o	options.
	Bending over backwards	
Ans	🗙 1. To let go of one's hard-earned wealth	
	ig imes 2. To figure out what is going on behind one's back	
	igma 3. To claim something that does not belong to one	
	✔ 4. To go out of one's way (to do something) (for someone)	
		Question ID : 5406263756
Q.16	Select the most appropriate ANTONYM of the given word.	
	ECLECTIC	
Ans	1. Constricted	
	🗙 2. Diverse	
	🗙 3. Suppress	
	🗙 4. Varied	
		Question ID : 5406263746
Q.17	Select the meaning of the given idiom.	
	Fiddling while Rome burnt	
Ans	1. Being corrupt even in sensitive matters	
	2. Be interested in unimportant things	
	3. Do something unimportant while there is a crisis	
	X 4. Be ignorant of a crisis	
		Question ID : 5406263757
0.10		
Q.18 Ans	Select the INCORRECTLY spelt word.	
	X 2. Kindling	
	X 3. Possession	
	4. Gruelling	
	4. Gruening	
		Question ID : 5406263751
0.19	Select the INCORRECTLY spelt word.	
Ans	1. Knack	
	2. Chlorophyl	
	X 3. Canonical	
	4. Albumen	
		Question ID : 5406263753

	Sentences of a paragraph are given below in jumbled order. Arrange the right order to form a meaningful and coherent paragraph.	sentences in the
	P. I'm guessing Masood Azhar is currently a very happy bunny Q. if Azhar had written down a wishlist of things he wanted out of the Pu tick marks have gone far below and beyond his list R. he has summoned a slave for a new ball-point pen, because this oper will clearly keep giving S. at the moment the man is probably feeling like someone who has wor the same time	ation is a gift that
Ans	X 1. PRSQ	
	X 2. QRPS	
	X 3. QPRS	
	🖌 4. PSQR	
		Question ID : 5406263742
Sectio	n : General English3	
Q.1	Select the option that can be used as a one-word substitute for the give	n group of words.
(One who is overanxious about his health	
Ans	1. Hypochondriac	
	X 2. Henpecked	
	X 3. Illiterate	
	X 4. Honorary	
		Question ID : 5406263762
Q.2	Select the option that can be used as a one-word substitute for the give	n group of words.
,	A place for the sick to recover health	
Ans	X 1. Sty	
	🗸 2. Sanatorium	
	X 3. Elysium	
	X 4. Cache	
		Question ID : 5406263764
0.3	Select the option that can be used as a one-word substitute for the give	n aroup of words.
	The final or eventual outcome or conclusion of a discussion, action or so	
Ans	1. Derisory	
	2. Puerile	
	2.1 donie	
	3 Unshot	
	 ✓ 3. Upshot ✓ 4. Imbasila 	
	 3. Upshot 4. Imbecile 	

Downloaded from - www.exammix.com

	Comprehension:			
	Read the following passage carefully and answer the given questions.			
	Long, long ago, there lived in the province of Shikoku in Japan, a travelling monkey-man, who earned his living by taking round a monkey and showing off the animal's tricks. One evening the man came home in a very bad temper and told his wife to send for the butcher the next morning. The wife was very bewildered and asked her husband: "Why do you wish me to send for the butcher?"			
	"It's no use taking that monkey round any longer; he's too old and forgets his tricks. I beat him with my stick all I know how, but he won't dance properly. I must now sell him to the butcher and make what money out of him I can. There is nothing else to be done."			
	The woman felt very sorry for the poor little animal, and pleaded for her husband to spare the monkey, but her pleading was all in vain, the man was determined to sell him to the butcher. Now the monkey was in the next room and overheard every word of the conversation. He soon understood that he was to be killed, and he said to himself: "Barbarous, indeed, is my master! Here I have served him faithfully for years, and instead of allowing me to end my days comfortably and in peace, he is going to let me be cut up by the butcher, and my poor body is to be roasted and stewed and eaten?			
	SubQuestion No : 9			
Q.9	Which of the following statements is incorrect according to the given passage?			
Ans	1. The butcher was in the next room and overheard every word of the conversation.			
	X 2. She pleaded for her husband to spare the monkey, but her pleading was all in vain.			
	X 3. I beat him with my stick all I know how, but he won't dance properly.			
	4. I must now sell him to the butcher and make what money out of him I can.			
	A. Thust now self him to the butcher and make what money out of him I can.			
	Question ID : 5406263771			
	Comprehension:			
	Comprehension: Read the following passage carefully and answer the given questions.			
	Comprehension:			
	Comprehension: Read the following passage carefully and answer the given questions. Long, long ago, there lived in the province of Shikoku in Japan, a travelling monkey-man, who earned his living by taking round a monkey and showing off the animal's tricks. One evening the man came home in a very bad temper and told his wife to send for the butcher the next morning. The wife was very bewildered and asked her husband: "Why do you wish me to send			
	Comprehension: Read the following passage carefully and answer the given questions. Long, long ago, there lived in the province of Shikoku in Japan, a travelling monkey-man, who earned his living by taking round a monkey and showing off the animal's tricks. One evening the man came home in a very bad temper and told his wife to send for the butcher the next morning. The wife was very bewildered and asked her husband: "Why do you wish me to send for the butcher?" "It's no use taking that monkey round any longer; he's too old and forgets his tricks. I beat him with my stick all I know how, but he won't dance properly. I must now sell him to the butcher			
	Comprehension: Read the following passage carefully and answer the given questions. Long, long ago, there lived in the province of Shikoku in Japan, a travelling monkey-man, who earned his living by taking round a monkey and showing off the animal's tricks. One evening the man came home in a very bad temper and told his wife to send for the butcher the next morning. The wife was very bewildered and asked her husband: "Why do you wish me to send for the butcher?" "It's no use taking that monkey round any longer; he's too old and forgets his tricks. I beat him with my stick all I know how, but he won't dance properly. I must now sell him to the butcher and make what money out of him I can. There is nothing else to be done." The woman felt very sorry for the poor little animal, and pleaded for her husband to spare the monkey, but her pleading was all in vain, the man was determined to sell him to the butcher. Now the monkey was in the next room and overheard every word of the conversation. He soon understood that he was to be killed, and he said to himself: "Barbarous, indeed, is my master! Here I have served him faithfully for years, and instead of allowing me to end my days comfortably and in peace, he is going to let me be cut up by the butcher, and my poor body is			
ς.10	Comprehension: Read the following passage carefully and answer the given questions. Long, long ago, there lived in the province of Shikoku in Japan, a travelling monkey-man, who earned his living by taking round a monkey and showing off the animal's tricks. One evening the man came home in a very bad temper and told his wife to send for the butcher the next morning. The wife was very bewildered and asked her husband: "Why do you wish me to send for the butcher?" "It's no use taking that monkey round any longer, he's too old and forgets his tricks. I beat him with my stick all I know how, but he won't dance properly. I must now sell him to the butcher and make what money out of him I can. There is nothing else to be done." The woman felt very sorry for the poor little animal, and pleaded for her husband to spare the monkey, but her pleading was all in vain, the man was determined to sell him to the butcher. Now the monkey was in the next room and overheard every word of the conversation. He soon understood that he was to be killed, and he said to himself: "Barbarous, indeed, is my master! Here I have served him faithfully for years, and instead of allowing me to end my days comfortably and in peace, he is going to let me be cut up by the butcher, and my poor body is to be roasted and stewed and eaten?			
	Comprehension: Read the following passage carefully and answer the given questions. Long, long ago, there lived in the province of Shikoku in Japan, a travelling monkey-man, who earned his living by taking round a monkey and showing off the animal's tricks. One evening the man came home in a very bad temper and told his wife to send for the butcher the next morning. The wife was very bewildered and asked her husband: "Why do you wish me to send for the butcher?" "It's no use taking that monkey round any longer; he's too old and forgets his tricks. I beat him with my stick all I know how, but he wont dance properly. I must now sell him to the butcher and make what money out of him I can. There is nothing else to be done." The woman felt very sorry for the poor little animal, and pleaded for her husband to spare the monkey, but her pleading was all in vain, the man was determined to sell him to the butcher. Now the monkey was in the next room and overheard every word of the conversation. He soon understood that he was to be killed, and he said to himself: "Barbarous, indeed, is my master! Here I have served him faithfully for years, and instead of allowing me to end my days comfortably and in peace, he is going to let me be cut up by the butcher, and my poor body is to be roasted and stewed and eaten? SubQuestion No: 10 "I have served him faithfully for years, and instead of allowing me to end my days comfortably and in peace, he is going to let me be cut up by the butcher" these lines were			
	Comprehension: Read the following passage carefully and answer the given questions. Long, long ago, there lived in the province of Shikoku in Japan, a travelling monkey-man, who earned his living by taking round a monkey and showing off the animal's tricks. One evening the man came home in a very bad temper and told his wife to send for the butcher the next morning. The wife was very bewildered and asked her husband: "Why do you wish me to send for the butcher?" "It's no use taking that monkey round any longer; he's too old and forgets his tricks. I beat him with my stick all I know how, but he won't dance properly. I must now sell him to the butcher and make what money out of him I can. There is nothing else to be done." The woman felt very sorry for the poor little animal, and pleaded for her husband to spare the monkey, but her pleading was all in vain, the man was determined to sell him to the butcher. Now the monkey was in the next room and overheard every word of the conversation. He soon understood that he was to be killed, and he said to himself: "Barbarous, indeed, is my master! Here I have served him faithfully for years, and instead of allowing me to end my days comfortably and in peace, he is going to let me be cut up by the butcher, and my poor body is to be roasted and stewed and eaten? SubQuestion No: 10 "I have served him faithfully for years, and instead of allowing me to end my days comfortably and in peace, he is going to let me be cut up by the butcher" these lines were said:			
	Comprehension: Read the following passage carefully and answer the given questions. Long, long ago, there lived in the province of Shikoku in Japan, a travelling monkey-man, who earned his living by taking round a monkey and showing off the animal's tricks. One evening the man came home in a very bad temper and told his wife to send for the butcher the next morning. The wife was very bewildered and asked her husband: "Why do you wish me to send for the butcher?" "It's no use taking that monkey round any longer, he's too old and forgets his tricks. I beat him with my stick all I know how, but he won't dance properly. I must now sell him to the butcher and make what money out of him I can. There is nothing else to be done." The woman felt very sorry for the poor little animal, and pleaded for her husband to spare the monkey, but her pleading was all in vain, the man was determined to sell him to the butcher. Now the monkey was in the next room and overheard every word of the conversation. He soon understood that he was to be killed, and he said to himself: "Barbarous, indeed, is my mastel Here I have served him faithfully for years, and instead of allowing me to end my days comfortably and in peace, he is going to let me be cut up by the butcher, and my poor body is to be roasted and stewed and eaten? SubQuestion No: 10 "I have served him faithfully for years, and instead of allowing me to end my days comfortably and in peace, he is going to let me be cut up by the butcher" these lines were subcluested here have to be allowing the to end my days comfortably and in peace, he is going to let me be cut up by the butcher" these lines were subcluested him faithfully for years, and instead of allowing me to end my days comfortably and in peace, he is going to let me be cut up by the butcher" these lines were subcluested him faithfully for years, and instead of allowing me to end my days comfortably and in peace, he is going to let me be cut up by the butcher" these lines were subcluested here have butcher"			
	 Comprehension: Read the following passage carefully and answer the given questions. Long, long ago, there lived in the province of Shikoku in Japan, a travelling monkey-man, who earned his living by taking round a monkey and showing off the animal's tricks. One evening the man came home in a very bad temper and told his wife to send for the butcher the next morning. The wife was very bewildered and asked her husband: "Why do you wish me to send for the butcher?" "It's no use taking that monkey round any longer, he's too old and forgets his tricks. I beat him with my stick all 1 know how, but he won't dance properly. I must now sell him to the butcher and make what money out of him I can. There is nothing else to be done." The woman felt very sorry for the poor little animal, and pleaded for her husband to spare the monkey, but her pleading was all in vain, the man was determined to sell him to the butcher. Now the monkey was in the next room and overheard every word of the conversation. He son understood that he was to be killed, and he said to himself. "Barbarous, indeed, is my master! Here I have served him faithfully for years, and instead of allowing me to end my days comfortably and in peace, he is going to let me be cut up by the butcher, and my poor body is to be roasted and stewed and eaten? SubQuestion No: 10 "I have served him faithfully for years, and instead of allowing me to end my days comfortably and in peace, he is going to let me be cut up by the butcher" these lines were served. I him faithfully for years, and instead of allowing me to end my days comfortably and in peace, he is going to let me be cut up by the butcher. M hy the butcher A by the butcher 2. by the monkey itself 3. by the monkey itself 3. by monkey marks itself 			
Q.10 Ans	 Comprehension: Read the following passage carefully and answer the given questions. Long, long ago, there lived in the province of Shikoku in Japan, a travelling monkey-man, who earned his living by taking round a monkey and showing off the animal's tricks. One evening the man came home in a very bad temper and told his wife to send for the butcher the next morning. The wife was very bewildered and asked her husband: "Why do you wish me to send for the butcher?" "It's no use taking that monkey round any longer, he's too old and forgets his tricks. I beat him with my stick all I know how, but he won't dance properly. I must now sell him to the butcher? The woman felt very sorry for the poor little animal, and pleaded for her husband to spare the monkey, but her pleading was all in vain, the man was determined to sell him to the butcher. Now the monkey was in the next room and overheard every word of the conversation. He soon understood that he was to be killed, and he said to himself: "Barbarous, indeed, is my master! Here I have served him faithfully for years, and instead of allowing me to end my days confortably and in peace, he is going to let me be cut up by the butcher, and my poor body is be roasted and stewed and eaten? CubQuestion No: 10 "I have served him faithfully for years, and instead of allowing me to end my days confortably and in peace, he is going to let me be cut up by the butcher" these lines were allowed in peace, he is going to let me be cut up by the butcher" these lines were allowed in peace, he is going to let me be cut up by the butcher" these lines were allowed in peace, he is going to let me be cut up by the butcher" these lines were allowed in peace, he is going to let me be cut up by the butcher" these lines were allowed in peace, he is going to let me be cut up by the butcher" these lines were allowed in peace. M to the butcher M to the butcher M to the butcher M to the butcher			

Downloaded from - www.exammix.com